
EXPLORING THE NEW
DRUPAL FRONT-END

WITH JAVASCRIPT

Hey, I’m
DRIES BUYTAERT

@Dries 
https://dri.es

Founder & Project Lead, Drupal

Co-Founder and CTO, Acquia

Hey, I’m
DRIES BUYTAERT

@Dries 
https://dri.es

Founder & Project Lead, Drupal

Co-Founder and CTO, Acquia

Disclaimer: I’m not a front-end developer

1
History  

of JavaScript

3
API-First
Drupal

4
JavaScript-driven 

Drupal admin
interface

2
History  

of Drupal

WHAT I ’LL TALK ABOUT

A brief history of
JavaScript across
the stack

Did you know that JavaScript was created in just 10 days?

May 1995
Brendan Eich wrote the first version of  
JavaScript in 10 days while working at Netscape

https://en.wikipedia.org/wiki/Brendan_Eich

For the first 10 years of JavaScript's life,  
professional programmers denigrated JavaScript  

because its target audience consisted of “amateurs"

That changed in 2004 with the launch of Gmail
Gmail was the first popular web application that really  

showed off what was possible with client-side JavaScript

Competing e-mail services
such as Yahoo! Mail and

Hotmail featured extremely
slow interfaces that used

server-side rendering  
almost exclusively

Almost every action by the
user requiring the server to  

reload the entire web page

Gmail began to work around these limitations by
using XMLHttpRequest; it allowed Gmail to load data in 

the background (asynchronously), avoiding a page refresh

avoiding the need for full page refreshes

Web Page XMLHttpRequest Server

<script
var a-
var xl
if(xls

https://en.wikipedia.org/wiki/XMLHttpRequest

Gmail's use of JavaScript caught the  
attention of developers around the world

2005
Google launched Google Maps, which used the
same technology as Gmail to transform online

maps into an interactive experience

Google's XMLHttpRequest approach in Gmail and  
Google Maps ultimately came to be called Ajax  

(originally "Asynchronous JavaScript and XML")

https://dri.es/%E2%80%9Dhttp://adaptivepath.org/ideas/ajax-new-approach-web-applications/%E2%80%9D

This resulted in a renaissance period of JavaScript usage
spearheaded by open source libraries and the

communities that formed around them

Did you know that Drupal helped  
put jQuery on the map?

(Drupal added jQuery to Drupal core as early as 2006)

In 2008, Google launched Chrome with a faster JavaScript  
engine called V8. The release announcement read:

"We also built a more powerful JavaScript engine,  
to power the next generation of web applications  

that aren't even possible in today's browsers"

https://googleblog.blogspot.com/2008/09/fresh-take-on-browser.html

At the launch, V8 improved JavaScript performance
by 10x over Internet Explorer by compiling JavaScript

code to native machine code before executing it

2010
Twitter made a move unprecedented in JavaScript's history

They began implementing a  
new architecture where they created:

1  
An API server that offered a single set

of endpoints for their desktop website,
their mobile website, their native apps,

and every third-party application

2  
Moved much of the UI rendering  

and corresponding logic to  
the user's browser

In other words:  
A JavaScript-based client fetches the data from the  

API server and renders the Twitter experience

Unfortunately, the redesign caused  
severe performance problems

The "time to first interaction" was poor
Lots of JavaScript had to be downloaded, parsed and executed  
by the user's browser before anything of substance was visible

Twitter suffered from these performance
problems for almost two years

Finally in 2012, Twitter reversed course by passing  
more of the rendering from the client back to the server

https://blog.twitter.com/engineering/en_us/a/2012/improving-performance-on-twittercom.html

The revised architecture renders the initial pages on the server 
but uses client-side JavaScript to add the interactive experience

The user's browser runs no JavaScript  
at all until after the initial content,

rendered on the server, is visible

WIN!
This new hybrid architecture reduced  
Twitter's page load time by 80%

In 2013,  
Airbnb was the first  

to use Node.js to provide  
isomorphic (also called universal  

or simply shared) JavaScript

The biggest advantage Airbnb's
JavaScript isomorphism had over
Twitter's approach is the notion
of a completely reusable
rendering system

WHERE JAVASCRIPT  
IS RIGHT NOW

The transpiler Drupal uses, allowing the use of modern features now

WHERE DRUPAL 8 IS
WITH JAVASCRIPT  

RIGHT NOW

Nightwatch
The Javascript functional testing framework

JavaScript went from a prototype  
written in 10 days . . .

. . . to being used across the stack by some
of the largest websites in the world

A short history
of Drupal

I started Drupal from my dorm room 18 years ago

HTML 4 was just released and CSS was all the rage

JavaScript was
for amateurs

Google was in its infancy

The mobile web didn’t exist

Social
media
wasn’t

invented
until five

years later

Drupal has constantly reinvented itself

1 OUT OF 40
sites in the world run on Drupal

 3%  
of web

7,000+  
code contributors  

in the last year

35,000  
contributors

15,000+  
modules

1M+ 
registered users  
on drupal.org

13M+  
unique visitors  
to drupal.org

in the last year

FREE

http://drupal.org
http://drupal.org

“Each morning we are born again.  
What we do today is what matters most.”

Drupal 8 released
November 2015

8.0

N
um

be
r

of
 s

ite
s

pi
ng

in
g

D
ru

pa
l.o

rg

100,000

200,000

300,000

April 2015 Nov 2015 April 2016 April 2017 April 2018

Drupal 8 sites have grown 51% in the last year

51%
increase  

year-over-year

Drupal 8
released

159,000 sites

241,000 sites

1  
Drupal 8 is becoming easier
to use for content creators,

and site builders

2  
Drupal 8 marks the start  

of Drupal’s evolution to an
API-first platform

Two main focus areas

Working toward an
API-first Drupal

7+ years ago we decided to start working on
making Drupal API-first, adding a REST API to core

We’ve been focused on support for all entity types, configuration entity support, user login/
logout/registration support, custom REST plugins, and most recently, file upload support!

Today, Drupal’s REST support is rich and mature

REST API + JSON API + GraphQL

Working with Drupal's entity graph

JSON API and GraphQL can query linked data  
(e.g. Drupal entities and entity references) in a single query

Drupal as a content
service for building
decoupled
applications

As a result, more and more organizations are
building decoupled applications served by Drupal

Chupachups UK Youth Hostel Association

New Balance Gault & Millau Concern Worldwide Legacy

The Weather Channel Warner Music Group Crossfit Games Thrillist

The Dodo French Fédération
of Athletics teach.orgCasa Modelo

Powdr Princess Cruises

http://teach.org

New Balance

Working toward a
JavaScript-driven  

Drupal admin interface

While organizations use JavaScript frameworks to create customer-
facing experiences using Drupal, Drupal's own administration

interface has not yet embraced a modern JavaScript framework

Drupal needs to provide a
cutting-edge experience for
its own users, the content
creators and site builders

We decided to start working on an alternative Drupal
administrative UI using React to experiment with ways we

could innovate on Drupal's behind-the-scenes interfaces

6 STEPS TOWARDS A
REACT UI FOR DRUPAL’S

ADMINISTRATION
BACKEND

1) Stabilize the JSON API module

2) Improve our JavaScript  
testing infrastructure

3) Create designs for the
administration UI

4. Allow contributed modules
to use React or Twig

5) Implement
missing web
services APIs

6) Make the React UI
extensible and configurable

This work benefits  
ALL decoupled builds

1
History  

of JavaScript

3
API-First
Drupal

4
JavaScript-driven 

Drupal admin
interface

2
History  

of Drupal

WHAT I TALKED ABOUT

Thank you to those who are  
involved in this initiative from  

the Drupal Community

Sally Young, Lauri Eskola, Tim Plunkett, Matt Davis, Angie Byron,
Daniel Wehner, Wim Leers, Gabe Sullice, Alex Pott, Cristina

Chumillas, Matt Grill, Mateu Aguiló Bosch, Ted Bowman, 
and many more!

Why should you help?

Conclusion
We've been making steady progress the past years to  

move Drupal to a more API-first and JavaScript-centric world

Drupal is no longer the
Drupal you used to know

 Q & A*

Find these slides at https://dri.es

(*I’m not a front-end developer)

