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Abstract— During codesign of a system, one still runs into the
impedance mismatch between the software and hardware worlds.
This paper identifies the different levels of abstraction of hardware
and software as a major culprit of this mismatch. For example,
when programming in high-level object-oriented languages like
Java, one has disposal of objects, methods, memory management,
. . . that facilitates development but these have to be largely
abandoned when moving the same functionality into hardware.

As a solution, this paper presents a virtual machine, based
on the Jikes Research Virtual Machine, that is able to bridge the
gap by providing the same capabilities to hardware components as
to software components. This seamless integration is achieved by
introducing an architecture and protocol that allow reconfigurable
hardware and software to communicate with each other in a
transparent manner i.e. no component of the design needs to be
aware whether other components are implemented in hardware
or in software.

Further, in this paper we present a novel technique that
allows reconfigurable hardware to manage dynamically allocated
memory. This is achieved by allowing the hardware to hold
references to objects and by modifying the garbage collector of
the virtual machine to be aware of these references in hardware.
We present benchmark results that show, for four different, well-
known garbage collectors and for a wide range of applications,
that a hardware-aware garbage collector results in a marginal
overhead and is therefore a worthwhile addition to the developer’s
toolbox.

I. INTRODUCTION

Hardware/Software codesign has become an indispensable
tool in the designer’s toolbox for building advanced embedded
systems. It provides the designer with the best of both worlds:
software (SW) development lends itself very well to building
components that have a complex control-flow while hardware
(HW) development excels at exploiting the maximum amount
of parallelism that is present in the application and therefore
achieves great speed-ups.

There is a catch: the SW and HW worlds speak totally
different languages. A SW developer thinks in terms of data
structures (preferably even object-oriented) and methods that
operate on them. These methods are constructed using control-
flow constructs such as loops, tests, method-calls, . . . The SW
developer’s temporal view of the execution is often that of
a purely sequential execution or maybe an execution with a
mild amount of parallelism (using threads or message passing
systems).

A HW developer on the other hand works with a model of
the application that is much more physically oriented. Data
resides in memories and registers and is operated upon by

combinational logic built up from logic gates. Execution is
often extremely parallel and is modelled by hundreds of parallel
processes that function simultaneously.

All this results in a serious impedance mismatch when trying
to unite the two worlds through codesign. A number of attempts
to address these issues have already been made [1], [2], [3].
We focus on the interface between SW and reconfigurable HW
because of reduced cost and ease of prototyping and because
reconfigurable HW allows for time-multiplexing [4].

One cannot fail to notice that existing codesign support is still
in its infancy so in [5] we proposed a codesign methodology
with full support for object-oriented design and which bridges
the gap between HW and SW in a much more elegant way. We
presented a Java [6] runtime environment where complete trans-
parency between a HW or SW implementation of tasks is aimed
for i.e. where HW tasks have essentially the same capability to
call methods, create objects, . . . as their SW counterparts and
can therefore readily be interchanged.1 In addition it provides a
shared-memory model (as opposed to message passing [7], [8]
or remote procedure calls with marshalling [9] used in existing
methodologies) where parallel executing tasks are modelled as
threads communicating through read, write and synchronisation
instructions on a shared memory.

Until recently our methodology only supported HW compo-
nents which do not hold references to objects i.e. which do not
have any impact on dynamic memory allocation. All dynamic
memory management was performed by the SW acting as a
proxy on behalf of the HW.

In this paper we present novel work enabling a HW com-
ponent to actually create and hold references to dynamically
allocated objects. Since HW components can now hold objects,
the Java garbage collector needs to be made aware of the
existence of these object references in order to find all objects
that are still in use. In addition, most Java environments will
perform a compaction phase after the garbage collection phase
in order to create a contiguous area of free memory. To support
compaction we enable the garbage collector to actually update
references to objects residing in HW. Our techniques have been
validated for four different garbage collectors and have been
tested on benchmarks from the DaCapo Benchmark Suite [10].

The rest of this paper is organized as follows. First we
explain the rationale of passing object references to HW. In
Section 3 we describe the architecture and the protocol we

1The decision between HW and SW is made by the runtime environment.
E.g. when the HW is executing one invocation of a method, another invocation
can be executed in software.



used for passing these references. Section 4 explains in depth
a use-case of a method invocation as an example of how the
protocol works. Section 5 discusses how it is possible to make
garbage-collector-safe HW, and how we adapted the garbage
collector for HW. The validation and some measurements of our
implementation is presented in Section 6. Finally we conclude
and discuss our planned future work.

II. RATIONALE OF PASSING OBJECT REFERENCES TO HW
In [5] we showed how HW components could be fit trans-

parently into the execution of a Java program on a Java virtual
machine (JVM). A shortcoming of this approach is that HW
components could not receive or hold actual references to
objects. All operations related to objects are performed through
the intermediation of the SW. Nevertheless, it is very useful to
grant the HW the same capabilities as the SW with regard to
references to objects. We discern three advantages.

First, the number of HW registers used for parameter passing
during a method call to HW can be limited. Instead of passing
a large amount of parameters to the HW we can simply provide
a reference to an object that contains (or can reach) the required
data.

Second, neither the SW nor the HW needs to know in what
type of memory the object actually resides. A reconfigurable
computing device can contain different memories, some of
which are tightly coupled with the CPU, while others are more
tightly coupled with the HW. The JVM runtime can implement
heuristics that place data closer to the computing unit that is
likely to use the data in the near future. These heuristics can
be based on profilation data or programmer hints.

Finally, calling a method, whether it is implemented in SW
or in HW is completely transparent. Both a SW or HW method
will receive the same parameters. This allows a HW method
to perform the same operations as a SW method: it can call
methods of any of its arguments or pass its arguments on to
other methods, independent of whether or not these methods
are implemented in HW or SW.

We will now introduce the protocol we use for calling HW
methods from SW and SW methods from HW with full support
for reference handling.

III. ARCHITECTURE AND PROTOCOL

We model a reconfigurable computing device as a shared
memory machine. The address space of the HW is mapped into
the address space of the JVM, therefore the JVM can access
memory and control registers of the HW. The HW can also
access the JVM’s heap, e.g. through Direct Memory Access
(DMA).2

Fig. 1 shows the memory map of a HW block, as seen by
the JVM. The four boxes on the left represent no physical HW,
but rather address ranges on the bus. Addresses that can be
read by the JVM are indicated with an R, writable addresses
with a W. These address ranges are mapped to either internal
RAM or internal registers of the HW. The garbage collection
region (range 0xc00 to 0xffc) has a one-to-one mapping to the

2This requires that the caches are flushed before invoking HW and invali-
dated when HW returns control to SW.

internal RAM for object references. Method parameters (0x400
to 0xbfc) and MethodReturnValue locations (0x00c, 0x010,
0x020, 0x024) are mapped arbitrarily onto addresses in the
internal RAM for primitive datatypes or the internal RAM for
object references.

The remaining addresses in the control registers region are
not mapped onto RAM, but are either ignored or directly
connected to registers in the HW. Data with a 32-bit size can be
passed to the HW by writing into a register. These registers are
marked word. Simple signals (indicated with bit-W) can be sent
by writing to the corresponding address. When this happens, a
single bit signal will be set to high during one clock cycle on
the HW side. Addresses indicated with bit-R represent single
bit output pins of the HW. If the HW drives a low signal, the
JVM will read 0 at this address, otherwise −1 is read.

IV. USE-CASE: PASSING REFERENCES BETWEEN HW AND
SW

In Sections II and III we have explained why it is important
to pass objects by reference and which protocol we will use to
pass these references. To illustrate this protocol, we will give
an example of a method invocation in HW.

Consider the method invocation of method1 in Fig. 2 (line 1)
with parameters s, o and l. The Java run-time environment
intercepts the method and decides it should be executed in HW.
First the arguments are written to the HW; the address of object
p is written to address 0x400, the value of s to 0x404 and the
address of o to 0x408. Since l is of type long and requires 64
bits, the lower (least significant) 32 bits are written to 0x40c
and the higher 32 bits are written to 0x410. Now the SW starts
the HW by writing any value to 0x004. The Java thread now
waits until it notices a request from HW. This request can be
seen through polling or through an interrupt mechanism.

The HW has its address decoder configured as indicated in
Fig. 1, so that its arguments p, s and o are written to locations
REFS0, PRIM0, REFS1, respectively. The 32 least significant
bits of l are mapped on PRIM1 and the 32 most significant
bits and PRIM2 respectively. The computation starts and at
some point it wants to call method2 (line 3). The value of
i was calculated by the HW (line 2) and stored in PRIM3.
Since method2 is a static method, there is no this3 object,
so the value of this is set to null. The HW reconfigures the
address decoder so that address 0x800 is mapped to a memory
location that contains the value 0x0, indicating a null pointer.
The parameters i and o are set by mapping addresses 0x804
and 0x808 to PRIM3 and REFS1. The value to be read at
0x018 is set to an integer that identifies method2. Now the
SW is signalled by setting the SWMethodRequest pin to 1;
from now on the SW will read 0xffffffff at address 0x014.

The SW notices that the HW wants to call a method. It reads
the value at 0x018 and looks up which method is indicated by
that value. Knowing which method will be invoked, the runtime
environment knows that only two word-sized arguments need
to be read from HW. Both arguments are read at 0x804 and
0x808, respectively. The method2 is now invoked. Since the

3The Java keyword this indicates on which object a method is called. Static
methods are called without a corresponding object.



Fig. 1. Mapping for Garbage Collector

1 int method1(short s, Object o, long l){ // executed in HW
2 int i = . . . ; // calculate i
3 double d = method2(i, o);
4 int r = . . . ; // calculate r;
5 return r;
6 }
7 static double method2(int j, Object p){ // executed in SW
8 . . .
9 }
Fig. 2. Example method call

return value requires 64 bits, it is split up in two parts that
are written at 0x020 and 0x024. The SW acknowledges that
the method call is completed and waits for another signal from
HW. This is done by writing a value to 0x01c and waiting
until the value at either 0x014 or 0x008 is 0xffffffff.

The HW can continue its calculations. Once all calculations
are finished, it writes the final result r in PRIM6. Address
0x00c is then mapped to PRIM6. The HW now sets its
HWMethodFinished pin, so that the SW can read 0xffffffff
at address 0x008.

Because HW does not know when SW will read the return
value, it keeps the data at 0x00c valid until SW starts a new
HW method invocation or until the HW is reset by writing to
address 0x000.

V. A HW-REFERENCE AWARE GARBAGE COLLECTOR

A. The Java Garbage Collector
Java has a system of automatic dynamic memory manage-

ment. This means the programmer can allocate memory in
an address space called the heap. This is done simply by
creating new objects. The programmer, however, cannot free
any allocated memory. Instead, this is done by a part of the run-
time system called the garbage collector. Whenever the heap is
full, the garbage collector eliminates objects in the heap that can
no longer be reached by the Java program. These objects are
called dead objects; objects that can still be reached by the Java
program are live objects. Determining which objects are dead or
alive is a problem of graph connectivity in the object-reference
graph. This is a directed graph where all nodes represent
objects and edges represent references from one object to the
other.

In addition to removing unused objects, the run-time system
can optionally move objects to one contiguous memory region
of live objects, thus creating a contiguous region of unused
memory. This is called compaction and is done in order to
prevent memory fragmentation.

We will concentrate only on garbage collectors that stall the
entire Java application while collecting garbage. This type of
garbage collection is called stop-the-world garbage collection.
Stop-the-world collectors assume they have full control over
all object references, and that no object references are hidden



from them. In other words, the object-reference graph is not
altered by another process during garbage collection and the
entire object-reference graph is visible to the garbage collector.

There are four important sub-goals in order to assure the
requirements are met.

1) We need to pause the entire application so that the
object-reference graph cannot be altered during garbage
collection.

2) All object references present in the HW (e.g. passed to
HW as method parameter or method return value) have
to be exposed to the garbage collector.

3) All object references in Java objects (e.g. in containers or
arrays, fields of objects) on the heap have to be exposed
to the garbage collector.

4) When passing references between Java and HW, no object
references may be hidden from the garbage collector in
any communication channel, such as the system bus, or
low-level SW routines.

Note that the first sub-goal ensures that the object-reference
graph does not change during garbage collection, and sub-goals
2–4 ensure that the entire object-reference graph is visible to
the garbage collector.

B. Pause / Resume
We have adapted the Jikes Research Virtual Machine (Jikes

RVM, a virtual machine formerly known as Jalapeño [11]
and almost completely programmed in Java) to achieve the
sub-goals spelled out in the previous subsection. The first
modification was to provide a list of all available HW entities
to the garbage collector. Whenever the garbage collector is
invoked, it will send a pause signal to each HW entity in
the list. This is done by simply writing to the pauseRequest
address (cf. Fig. 1) of each HW entity. When HW receives a
pause request, it stops working and acknowledges the request
through a memory mapped register. Once the garbage collector
has checked that all HW entities are paused, it can proceed.
After the garbage collector finishes, a resume signal is sent to
HW.

Note that pausing does not mean that HW has to stop all
computations. We only demand that no references are changed,
so computations that only involve primitive data can continue.

C. References in HW
Whenever HW is paused, all of its object references have

to be visible to the garbage collector. We provide a dedicated
garbage collection region in the memory mapped address space
of the HW. The garbage collector can read and update all of
the HW’s object references through this region.

The first implementation we propose will always expose all
references to the garbage collector, whether the HW is paused
or not. In this implementation all object references are held in
an internal RAM for object references (Fig. 1). This RAM is
directly mapped onto the garbage collection region. If the HW
wants to receive an object reference as method parameters, it
can map the corresponding parameter address to a location in
the internal reference memory. A primitive parameter should

never be mapped to the RAM for references, since the garbage
collector would mistake it for an object reference. Instead it
can be mapped to a separate RAM for primitive datatypes. The
return values of methods are mapped onto internal RAM in the
same manner as parameters.

As an alternative implementation, we fully exploit the paus-
ing mechanism introduced in the previous subsection. In this
implementation object references are not stored in a separate
RAM that is constantly exposed to the garbage collector.
Instead, object references can reside hidden inside the HW, e.g.
in many different small RAMs or in registers. Whenever a pause
is requested by the garbage collector, the HW needs to expose
all of its object references through the garbage collection
region. If needed the HW can take several clock cycles to copy
all references from its internal registers and RAMs into the
garbage collection region. When this operation is finished, the
HW acknowledges the pause request and garbage collection
can start.

After the garbage collector has finished and the HW has
received a resume signal, it can copy the updated object
references back into its internal registers and RAMs.

D. References in SW

Since the garbage collector is designed to trace object refer-
ences in SW, there are no further steps required to accomplish
this sub-goal.

E. References in Communication Channels

While passing an object reference between HW and SW,
there is a short moment when the reference is just a sequence
of bits, without the explicit semantics of an object reference. If
SW passes a reference to HW, it first looks up the address
of the object. This address is then written to HW through
memory mapped I/O. We require all I/O to be completely
ordered in time, in other words, every started I/O operation
finishes completely before another I/O operation can be started.

In order to pass an object reference from SW to HW we need
to look up the address of the object, and write that address to
HW using memory mapped I/O.4 This means that there exists
a moment in time when we work on raw addresses instead
of object references. The difference is that raw addresses
are not automatically updated by the garbage collector, and
consequently they are not safe.

To pass object references in a garbage-collector-safe fashion,
the address lookup and the address write need to be performed
atomically. This can be accomplished by (i) making sure both
operations occur in the same method and (ii) making sure this
method will not be interrupted by a thread switch or by the
garbage collector. This is done using a compiler pragma5.

4Both operations (looking up addresses and performing memory mapped I/O)
are impossible in ordinary Java code, but Jikes RVM provides magic methods
that do allow such operations.

5Pragmas are, again, not supported in regular Java, but they are in the Jikes
RVM



VI. PERFORMANCE MEASUREMENTS

We evaluate the techniques presented in this paper using four
garbage collectors, respectively the MarkSweep, SemiSpace,
GenCopy and GenMS collectors provided by MMTk [12].
The machine used for benchmarking is a Symmetric Multi
Processor (SMP) machine that is equipped with two AMD
Athlon MP 2 GHz processors with 512 KiB cache each and
1 GiB main memory. It runs a Linux 2.6.8 kernel with SMP
support. The FPGA is an Altera Stratix 1S25 hosted on an
Altera PCI development board. This board plugs into a 66 MHz
PCI slot, and uses the PCI bus as 32-bit bus.

The virtual machine we used is an adapted version of Jikes
RVM 2.3.2. We used the FastAdaptive just-in-time compiler
and specified no further command-line arguments. This results
in an initial heap size of 20 MiB and a maximum heap size of
100 MiB.

A. Micro Benchmark
In order to compare the cost of garbage collection with HW

and garbage collection in a pure SW environment, we devised
the following micro benchmark. First, the garbage collector
is informed of the existence of n instances of HW. In normal
operation these HW instances would be used to accelerate some
Java methods, but we only measure the garbage collection cost
without any actual HW acceleration. The HW does not do any
computation, it only holds references and accepts pause and
resume signals. Each instance can hold 256 object references
to Java objects. We create n×256 objects, and pass their
object references to the HW instances. We then measure the
duration of a garbage collection by forcing a garbage collector
invocation in a loop and measuring the execution time of the
loop. We also ran the same benchmark without passing the
object references to HW. Instead the object references were
held in an array of objects.

The execution times are given in Table I(a). The cost for
collecting objects in HW raises linearly with the number
of objects in HW. In full-heap collectors (SemiSpace and
MarkSweep) the overhead for HW collection is negligible,
except when a very high number of objects is referenced in
HW (n=100 ; 25600 objects in HW). We expect that HW will
be used only for speeding up a very limited number of methods,
and will only hold a very limited number of objects, e.g.
n=10; 2560 objects or less. In generational collectors (GenMS,
GenCopy), the execution overhead also rises linearly, but since
a first-generation garbage collection execution takes very little
time, the HW-aware garbage collection cost is large compared
to the original garbage collection cost.

B. DaCapo Benchmarks
The DaCapo Benchmark Suite [13] is a suite of programs

for testing memory management systems. We used six bench-
marks: antlr, bloat, fop, hsqldb, jython, and ps from version
beta050224. Each benchmark was run without HW overhead,
and with a HW overhead of 256, 2560 and 25600 object
references in HW. These references refer to objects created
before the benchmark actually started, introducing an extra load

TABLE I
TOP TABLE(A): MICRO BENCHMARK EXECUTION TIMES (MS). BOTTOM

TABLE(B): RELATIVE DELAY FOR 25600 OBJECTS IN HW, COMPARED TO

BENCHMARKS WITHOUT HW.

(a) n Semi- Mark- Gen- Gen-
Space Sweep Copy MS

extra 0 196.1 204.1 1.269 1.255
objects 1 196.1 204.8 2.193 2.074

in 10 200.7 209.6 5.805 5.712
HW 100 241.0 249.6 46.216 45.834
extra 0 195.9 205.0 1.293 1.267

objects 1 196.3 204.7 1.294 1.272
in 10 196.2 205.5 1.288 1.260

SW 100 200.5 207.3 1.294 1.284

(b) Semi- Mark- Gen- Gen-
Space Sweep Copy MS

antlr 0.20% -0.05% 0.02% -0.36%
bloat -0.50% 1.09% -0.28% 0.93%
fop 0.01% 0.24% -0.07% -0.58%

hsqldb 0.17% 0.32% 1.40% -2.28%
jython 0.85% 0.95% -0.62% 2.32%

ps 1.23% -0.36% -0.82% -0.42%

for the garbage collector. Each measurement was performed
ten times, resulting in 960 measurements total (6 benchmarks,
4 garbage collectors, 4 levels of HW overhead, 10 runs). The
delay due to HW overhead is very small because even in these
benchmarks, which are considered to be memory-intensive, the
number of garbage collections is limited to values ranging
from 7 (fop, SemiSpace) to 148 (hsqldb, GenCopy). We
present only the numbers for the measurements with 25600
extra objects compared to those without HW. As can be seen
from Table I(b), the introduced delay is never more than 2.32%.
The non-determinism, introduced mainly by the optimizing
compiler introduces noise in the measurements. This noise is
the cause of the negative delays we measured.

VII. CONCLUSION

In this paper we have presented an interface between HW
and the object-oriented high level programming language Java,
which enables method calls over the HW/SW boundary while
preserving the Java convention of passing objects by reference.
We have adapted the garbage collection mechanism in Jikes
RVM in such a way that four major garbage collectors of the
Jikes RVM are supported. Measurements show that for a rea-
sonable amount of references in HW (2560 object references),
the absolute cost of garbage collection is low. The impact of
garbage collector on memory-intensive benchmarks is limited
to 2.32%, even for a large amount of object references in HW
(25600 references).

In the future we plan to improve the garbage collection per-
formance for generational collectors. We also plan to accelerate
real-life application using the Java/HW interface and garbage
collector we presented here.
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