
GCH: Hints for Triggering Garbage Collections?

Dries Buytaert, Kris Venstermans, Lieven Eeckhout, Koen De Bosschere

ELIS Department, Ghent University – HiPEAC member
St.-Pietersnieuwstraat 41, B-9000 Gent, Belgium

{dbuytaer,kvenster,leeckhou,kdb}@elis.UGent.be

Abstract. This paper shows that Appel-style garbage collectors often
make suboptimal decisions both in terms of when and how to collect.
We argue that garbage collection should be done when the amount of
live bytes is low (in order to minimize the collection cost) and when
the amount of dead objects is high (in order to maximize the available
heap size after collection). In addition, we observe that Appel-style col-
lectors sometimes trigger a nursery collection in cases where a full-heap
collection would have been better.
Based on these observations, we propose garbage collection hints (GCH)
which is a profile-directed method for guiding garbage collection. Off-
line profiling is used to identify favorable collection points in the pro-
gram code. In those favorable collection points, the garbage collector
dynamically chooses between nursery and full-heap collections based on
an analytical garbage collector cost-benefit model. By doing so, GCH
guides the collector in terms of when and how to collect. Experimental
results using the SPECjvm98 benchmarks and two generational garbage
collectors show that substantial reductions can be obtained in garbage
collection time (up to 29X) and that the overall execution time can be
reduced by more than 10%. In addition, we also show that GCH reduces
the maximum pause times and outperforms user-inserted forced garbage
collections.

1 Introduction

Garbage collection (GC) is an important subject of research as many of today’s
programming language systems employ automated memory management. Po-
pular examples are Java and C#. Before discussing the contributions of this
paper, we revisit some garbage collection background and terminology.

1.1 Garbage collection

An Appel-style generational copying collector divides the heap into two genera-
tions [2], a variable-size nursery and a mature generation. Objects are allocated
from the nursery. When the nursery fills up, a nursery collection is triggered and
the surviving objects are copied into the mature generation. When the objects
? The first two authors contributed equally to this paper.

are copied, the size of the mature generation is grown and the size of the nurs-
ery is reduced accordingly. Because the nursery size decreases, the time between
consecutive collections also decreases and objects have less time to die. When
the nursery size drops below a given threshold, a full-heap collection is triggered.
After a full-heap collection all free space is returned to the nursery.

In this paper we consider two flavors of generational copying collectors,
namely GenMS and GenCopy from JMTk [3]. GenMS collects the mature gener-
ation using the mark-sweep garbage collection strategy. The GenCopy collector
on the other hand, employs a semi-space strategy to manage its mature genera-
tion. The semi-space collector copies scanned objects, whereas the mark-sweep
collector does not. These Appel-style garbage collectors are widely used.

To partition the heap into generations, the collector has to keep track of
references between different generations. Whenever an object in the nursery is
assigned to an object in the mature generation—i.e., there is a reference from an
object in the mature space to an object in the nursery space—this information
is tracked by using a so-called remembered set. When a nursery collection is
triggered the remembered set must be processed to avoid erroneously collecting
nursery objects that are referenced only from the mature generation.

1.2 Paper contributions

While implicit garbage collection offers many benefits, for some applications the
time spent reclaiming memory can account for a significant portion of the total
execution time [1]. Although garbage collection research has been a hot research
topic for many years, little research has been done to decide when and how
garbage collectors should collect.

With Appel-style collectors, garbage is collected when either the heap or a
generation is full. However, to reduce the time spent in GC, the heap is best
collected when the live ratio is low: the fewer live objects, the fewer objects need
to be scanned and/or copied, the more memory there is to be reclaimed, and the
longer we can postpone the next garbage collection run. In this paper, we show
that collecting at points where the live ratio is low, can yield reductions in GC
time.

In addition, when using an Appel-style collector with two generations, a
decision needs to be made whether to trigger a full-heap or nursery collection.
We found that triggering nursery collections until the nursery size drops below a
certain threshold is sometimes suboptimal. In this paper, we show how to trade
off full-heap collections and nursery collections so that performance improves.

The approach presented in this paper to decide when and how to collect, is
called garbage collection hints (GCH) and works as follows. GCH first determines
favorable collection points (FCPs) for a given application through offline profil-
ing. A favorable collection point is a location in the application code where the
cost of a collection is relatively cheap. During program execution a cost function
is then computed in each FCP to determine the best GC strategy: postpone GC,
perform a nursery GC, or perform a full-heap GC. Our experimental results us-
ing the SPECjvm98 benchmarks and two generational collectors show that GCH

 6

 8

 10

 12

 14

 16

 18

 0 100 200 300 400 500 600 700 800 900

liv
e

da
ta

 in
 M

B

time in allocated MB

_213_javac, -s100, -m4 -M4 with 156 MB heap, GenCopy

full-heap collections without GCH
nursery collections without GCH

nursery collections with GCH

Fig. 1. Garbage collection points with and without GCH.

can reduce the garbage collector time by up to 29X and can improve the overall
execution time by more than 10%.

Figure 1 illustrates why GCH actually works for the 213 javac benchmark.
This graph shows the number of live bytes as a function of the number of allo-
cated bytes. The empty circles denote nursery collections and the squares denote
full-heap collections when GCH is not enabled. Without GCH, GC is triggered
at points where the number of live bytes is not necessarily low. In fact, the max-
imum GC time that we observed on our platform for these GC points is 225ms;
and 12MB needs to be copied from the nursery to the mature generation. The
GC time for a full-heap collection takes 330ms. When GCH is enabled (see the
filled circles in Figure 1), garbage gets collected when the amount of live bytes
reaches a minimum, i.e., at an FCP. The GC time at an FCP takes at most 4.5ms
since only 126KB needs to be copied. From this example, we observe two key
features why GCH actually works: (i) GCH preferably collects when the amount
of live data on the heap is low, and (ii) GCH eliminates full-heap collections
by choosing to perform (cheaper) nursery collections at more valuable points in
time.

The main contributions of this paper are as follows.

– We show that GC is usually not triggered when the amount of live data is
low, i.e., when the amount of garbage collection work is minimal.

– We show that the collector does not always make the best decision when
choosing between a nursery and a full-heap collection.

– We propose GCH which is a feedback-directed technique based on profile
information that provides hints to the collector about when and how to
collect. GCH tries to collect at FCPs when the amount of live data is minimal
and dynamically chooses between nursery and full-heap collections. The end
result is significant reductions in GC time and improved overall performance.
GCH is especially beneficial for applications that exhibit a recurring phase
behavior in the amount of live data allocated during program execution.

– We show that GCH reduces the pause time during garbage collection.

– And finally, we show that for our experimental setup, GCH improves overall
performance compared to forced programmer-inserted GCs. The reason is
that GCH takes into account the current live state of the heap whereas
forced programmer-inserted GCs do not.

The remainder of this paper is organized as follows. Section 2 presents an
overview of our experimental setup. In section 3, we describe the internals of
GCH. The results are presented in section 4 after which we discuss related work
in section 5. Finally, some conclusions are presented in section 6.

2 Experimental setup

2.1 Java virtual machine

We use the Jikes Research Virtual Machine 2.3.2 (RVM) [4] on an AMD Athlon
XP 1500+ at 1.3 GHz with a 256KB L2-cache, 1GB of physical memory, running
Linux 2.6. Jikes RVM is a Java virtual machine (VM) written almost entirely in
Java. Jikes RVM uses a compilation-only scheme for translating Java bytecodes
to native machine instructions. For our experiments we use the FastAdaptive
profile: all methods are initially compiled using a baseline compiler, and sampling
is used to determine which methods to recompile using an optimizing compiler.

Because Jikes RVM is written almost entirely in Java, internal objects such
as those created during class loading or those created by the runtime compilers
are allocated from the Java heap. Thus, unlike with conventional Java virtual
machines the heap contains both application data as well as VM data. We found
that there is at least 8MB of VM data that is quasi-immortal. The presence of
VM data has to be taken into account when interpreting the results presented
in the remainder of this work.

Jikes RVM’s memory management toolkit (JMTk) [3] offers several GC
schemes. While the techniques presented in this paper are generally applicable to
various garbage collectors, we focus on the GenMS and GenCopy collectors. Both
are used in Jikes RVM’s production builds that are optimized for performance.

To get around a bug in Jikes RVM 2.3.2 we increased the maximum size of the
remembered set to 256MB. In order to be able to model the shrinking/growing
behavior of the heap accurately, we made one modification to the original RVM.
We placed the remembered set outside the heap.

Performance is measured using the Hardware Performance Monitor (HPM)
subsystem of Jikes RVM. HPM uses (i) the perfctr1 Linux kernel patch, which
provides a kernel module to access the processor hardware, and (ii) PAPI [5], a
library to capture the processor’s performance counters. The hardware perfor-
mance counters keep track of the number of retired instructions, elapsed clock
cycles, etc.

1 http://user.it.uu.se/~mikpe/linux/perfctr/

http://user.it.uu.se/~mikpe/linux/perfctr/

2.2 Benchmarks

To evaluate our mechanism, we use the SPECjvm982 benchmark suite. The
SPECjvm98 benchmark suite is a client-side Java benchmark suite consisting
of seven benchmarks, each with three input sets: -s1, -s10 and -s100. With
the -m and -M parameters the benchmark can be configured to run multiple
times without stopping the VM. Garbage collection hints work well for long
running applications that show recurring phase behavior in the amount of live
data. To mimic such workloads with SPECjvm98, we use the -s100 input set in
conjunction with running the benchmarks four times (-m4 -M4).

We used all SPECjvm98 benchmarks except one, namely 222 mpegaudio,
because it merely allocates 15MB each run and triggers few GCs. The other
benchmarks allocate a lot more memory.

All SPECjvm98 benchmarks are single-threaded except for 227 mtrt which
is a multi-threaded raytracer. Note that because both Jikes RVM’s sampling
mechanism and the optimizing compiler run in separate threads all benchmarks
are non-deterministic.

We ran all experiments with a range of different heap sizes. We vary the
heap size between the minimum feasible heap size and the heap size at which
our mechanism stops triggering GCs or shows constant behavior.

Some benchmarks, such as 213 javac, use forced garbage collections trig-
gered through calls to java.lang.System.gc(). We disabled forced garbage
collections unless stated otherwise.

3 Garbage collection hints

Our garbage collection hints approach consists of an offline and an online step,
see Figure 2. The offline step breaks down into two parts: (i) offline profiling of
the application and (ii) garbage collector analysis. The offline profiling computes
the live/time function of the application, i.e., the amount of live bytes as a
function of the amount of bytes allocated. Based on this live/time function,
favorable collection points (FCPs) can be determined. Determining the FCPs is
a one-time cost per application. The garbage collector analysis characterizes the
collection cost for a particular garbage collector and application, i.e., the amount
of time needed to process a given amount of live bytes. This is dependent on the
collector and the platform on which the measurements are done. In the online
part of GCH, the methods that have been identified as FCPs are instrumented to
invoke a cost-benefit model that helps the garbage collector make decisions about
when and how to collect. This decision making is based on the amount of heap
space available, the live/time function of the application and the characteristics
of the garbage collector. The following subsections discuss GCH in more detail.

2 http://www.spec.org/jvm98/

http://www.spec.org/jvm98/

Profile application
- Identify FCPs
- Capture live/time function

Analyze collector Guide garbage collection

Offline Online

Fig. 2. An overview of the GCH methodology.

3.1 Program analysis

Live/dead ratio behavior. The first step of the offline profiling is to collect
the live/time function which quantifies the number of live bytes as a function of
the bytes allocated so far. Moreover, we are interested in linking the live/time
function to methods calls. We modified Jikes RVM to timestamp and report all
method entries and exits. For each method invocation, we want to know how
many objects/bytes died and how many objects are live. Therefore, a lifetime
analysis is required at every point an object could have died. There are two
reasons for an object to die: (i) an object’s last reference is overwritten as a
result of an assignment operation, or (ii) an object’s last reference is on a stack
frame and the stack frame gets popped because the frame’s method returns or
because an exception is thrown. To avoid having to do a lifetime analysis for
every assignment operation, method return and exception, we used a modified
version of the Merlin trace generator [6] that is part of Jikes RVM. Merlin is
a tool that precisely computes every object’s last reachable time. It has been
modified to use our alternative timestamping method to correlate object death
with method invocations.

Figure 3 shows the live/time function for the various benchmarks. As can be
seen from these graphs, the live/time function shows recurring phase behavior.
This recurring phase behavior will be exploited through GCH. Applications that
do not exhibit a phased live/time function are not likely to benefit from GCH.
Next, the live/time function is used to select FCPs and to compute the FCP
live/time patterns.

Favorable collection points. For a method to represent a favorable collection
point (FCP), it needs to satisfy three criteria:

1. An FCP’s invocation should correspond to a local minimum in terms of the
number of live bytes. In other words, we need to select methods that are
executed in the minima of the live/time function. This will allow GCH to
collect garbage with minimal effort.

 0
 2
 4
 6
 8

 10
 12
 14
 16

 0 5
0

 1
00

 1
50

 2
00

 2
50

 3
00

 3
50

 4
00

 4
50

 5
00

liv
e

da
ta

 in
 M

B

time in allocated MB

_201_compress -m4 -M4 -s100

 0

 2

 4

 6

 8

 10

 12

 0

 2
00

 4
00

 6
00

 8
00

 1
00

0

 1
20

0

liv
e

da
ta

 in
 M

B

time in allocated MB

_202_jess -m4 -M4 -s100

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18

 0 5
0

 1
00

 1
50

 2
00

 2
50

 3
00

 3
50

liv
e

da
ta

 in
 M

B

time in allocated MB

_209_db -m4 -M4 -s100

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

 0
 1

00
 2

00
 3

00
 4

00
 5

00
 6

00
 7

00
 8

00
 9

00

liv
e

da
ta

 in
 M

B

time in allocated MB

_213_javac -m4 -M4 -s100

 0

 5

 10

 15

 20

 25

 0

 1
00

 2
00

 3
00

 4
00

 5
00

 6
00

 7
00

liv
e

da
ta

 in
 M

B

time in allocated MB

_227_mtrt -m4 -M4 -s100

 0
 2
 4
 6
 8

 10
 12
 14

 0

 2
00

 4
00

 6
00

 8
00

 1
00

0

 1
20

0

liv
e

da
ta

 in
 M

B

time in allocated MB

_228_jack -m4 -M4 -s100

Fig. 3. The live/time function for the various benchmarks: number of live bytes
as a function of the number of bytes allocated.

2. An FCP should not be executed frequently. To minimize the overhead of the
instrumentation code, FCPs that represent cold methods are preferred. A
method that gets executed only in local minima is an ideal FCP.

3. The live/time pattern following the execution of the FCP should be fairly
predictable, i.e., each time the FCP gets executed, the live/time function
should have a more or less similar shape after the FCP.

Given the live/time function, selecting FCPs is fairly straightforward. Table 1
shows the selected FCPs that we selected for the SPECjvm98 benchmarks. Some
benchmarks have only one FCP (see for example Figure 1 for 213 javac); others
such as 227 mtrt have three FCPs.

To illustrate the potential benefit of FCPs, Figure 4 plots the maximum time
spent in GC when triggered at an FCP and when triggered otherwise. We make a
distinction between full-heap and nursery collections, and plot data for a range of
heap sizes. For most benchmarks we observe that the maximum GC time spent at
an FCP is substantially lower than the GC time at other collection points. This
reinforces our assumption that collecting at an FCP is cheaper than collecting
elsewhere. However, there are two exceptions, 201 compress and 228 jack, for
which GC time is insensitive to FCPs. For 201 compress, this is explained by
the fact that the live/time function shown in Figure 3 is due to a few objects
that are allocated in the Large Object Space (LOS). Because objects in the LOS
never get copied, GCH cannot reduce the copy cost. Furthermore, because there
are only a few such objects it will not affect the scan cost either. For 228 jack,

Benchmark Favorable collection points
201 compress spec.io.FileInputStream.getContentLength()
202 jess spec.benchmarks. 202 jess.jess. undefrule.<init>()V

spec.harness.BenchmarkTime.toString()Ljava/lang/String;
209 db spec.harness.Context.setBenchmarkRelPath(Ljava/lang/String;)V

spec.io.FileInputStream.getCachingtime()J
213 javac spec.benchmarks. 213 javac.ClassPath.<init>(Ljava/lang/String;)V
227 mtrt spec.io.TableOfExistingFiles.<init>()V

spec.harness.Context.clearIOtime()V
spec.io.FileInputStream.getCachingtime()J

228 jack spec.benchmarks. 228 jack.Jack the Parser Generator Internals.-
compare(Ljava/lang/String;Ljava/lang/String;)V

Table 1. The selected FCPs for each of the benchmark applications. The method
descriptors use the format specified in [7].

the height of the live/time function’s peaks is very low, see Figure 3. Because
201 compress and 228 jack are insensitive to FCPs we exclude them from
the other results that will be presented in this paper. (In fact, we applied GCH
to these benchmarks and observed neutral impact on overall performance. Due
to space constraints, we do not to include these benchmarks in the rest of this
paper.)

It is also interesting to note that for 209 db, a nursery collection can be more
costly than a full-heap collection. This is due to the fact that the remembered
set needs to be scanned on a nursery collection. As such, for 209 db a full-
heap collection can be more efficient than a nursery collection. This is exploited
through GCH.

FCP’s live/time pattern. For each unique FCP we have to capture the
live/time pattern following the FCP. This is a slice of the live/time function
following the FCP that recurs throughout the complete program execution. We
sample the FCP’s live/time pattern at a frequency of one sample per 0.5MB
of allocated memory and use it as input for the cost-benefit model. An FCP’s
live/time pattern is independent of the heap size (the same information is used
for all heap sizes) and is independent of the collection scheme (the same informa-
tion is used for both GenMS and GenCopy). And it only needs to be computed
once for each benchmark.

3.2 Collector analysis

So far, we discussed the offline application profiling that is required for GCH.
We now discuss the characterization of the garbage collector. This character-
ization will be used in the cost model that will drive the decision making in
GCH during program execution. The characterization of the garbage collector
quantifies the cost of a collection. We identify three cost sources: the cost of a
full-heap collection, the cost of a nursery collection and the cost of processing
the remembered set. The cost functions take as input the amount of live data
and output the estimated collection time. These cost functions are dependent

 0

 50

 100

 150

 200

 250

 20 40 60 80 100 120 140 160

m
ax

im
um

 ti
m

e
in

 m
s

heap size in MB

_201_compress, GenMS

 0

 50

 100

 150

 200

 250

 15 20 25 30 35 40 45 50 55 60

m
ax

im
um

 ti
m

e
in

 m
s

heap size in MB

_202_jess, GenMS

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500

 0 50 100 150 200 250 300 350

m
ax

im
um

 ti
m

e
in

 m
s

heap size in MB

_209_db, GenMS

 0
 50

 100
 150
 200
 250
 300
 350
 400

 40 60 80 100 120 140 160 180 200

m
ax

im
um

 ti
m

e
in

 m
s

heap size in MB

_213_javac, GenMS

 0
 50

 100
 150
 200
 250
 300
 350

 20 40 60 80 100 120 140 160 180 200

m
ax

im
um

 ti
m

e
in

 m
s

heap size in MB

_227_mtrt, GenMS

full-heap collections at non-FCPs
full-heap collections at FCPs

nursery collections at non-FCPs
nursery collections at FCPs

 0
 50

 100
 150
 200
 250
 300

 10 20 30 40 50 60 70 80 90 100

m
ax

im
um

 ti
m

e
in

 m
s

heap size in MB

_228_jack, GenMS

full-heap collections at non-FCPs
full-heap collections at FCPs

nursery collections at non-FCPs
nursery collections at FCPs

Fig. 4. The maximum times spent in garbage collection across different heap
sizes for each of the different scenarios.

on the application, the collector and the given platform (VM, microprocessor,
etc.).

Figure 5 shows how the cost functions are to be determined for the GenMS
and GenCopy collectors. The graphs are obtained by running the benchmarks
multiple times with different heap sizes using instrumented collectors. In these
graphs we make a distinction between nursery collections, full-heap collections
and processing of the remembered set. Hence, the processing times on the nursery
collection graphs do not include the time required to process the remembered
sets.

GC time can be modeled as a linear function of the amount of live data for
both collectors. In other words, the scanning and copying cost is proportional to
the amount of live bytes. Likewise, the processing cost of the remembered set can
be modeled as a linear function of its size. In summary, we can compute linear
functions that quantify the cost of a nursery collection, full-heap collection and
processing of the remembered set.

 0
 50

 100
 150
 200
 250
 300
 350
 400

 0 2 4 6 8 10 12 14 16 18 20

av
er

ag
e

tim
e

in
 m

s

live data in nursery and mature generation, in MB

GenMS, full-heap collections

_202_jess
_209_db

_213_javac
_227_mtrt

 0
 50

 100
 150
 200
 250
 300
 350
 400

 0 2 4 6 8 10 12 14 16 18 20

av
er

ag
e

tim
e

in
 m

s

live data in nursery and mature generation, in MB

GenCopy, full-heap collections

_202_jess
_209_db

_213_javac
_227_mtrt

 0
 50

 100
 150
 200
 250
 300
 350
 400

 0 5 10 15 20

av
er

ag
e

tim
e

in
 m

s

live data in nursery, in MB

GenMS, nursery collections

 0
 50

 100
 150
 200
 250
 300
 350
 400

 0 5 10 15 20

av
er

ag
e

tim
e

in
 m

s

live data in nursery, in MB

GenCopy, nursery collections

 1

 10

 100

 1000

 10000

 0.1 1 10 100 1000

av
er

ag
e

tim
e

in
 m

s

size of remembered set, in MB

GenMS, remembered sets

_202_jess
_209_db

_213_javac
_227_mtrt

 1

 10

 100

 1000

 10000

 0.1 1 10 100 1000

av
er

ag
e

tim
e

in
 m

s

size of remembered set, in MB

GenCopy, remembered sets

_202_jess
_209_db

_213_javac
_227_mtrt

Fig. 5. The cost of a nursery and full-heap collection in terms of the amount of
copied/live data.

In this paper we employ both application-specific cost functions as well as
cross-application cost functions. In fact, on a specialized system with dedicated
long running applications, it is appropriate to consider a cost function that is
specifically tuned for the given application. Nevertheless, given the fact that the
cost functions appear to be fairly similar across the various applications, see
Figure 5, choosing application-independent or cross-application cost functions
could be a viable scenario for general-purpose environments. In this paper we
evaluate both scenarios.

3.3 GCH at work

The information that is collected through our offline analysis is now communi-
cated to the VM to be used at runtime. Jikes RVM reads all profile information
at startup. This contains (i) a list of methods that represent the FCPs, (ii) the
live/time pattern per FCP, and (iii) the cost functions for the given garbage
collector. Jikes RVM is also modified to dynamically instrument the FCPs. The
instrumentation code added to the FCPs examines whether the current FCP
should trigger a GC. The decision to collect or not is a difficult one as there ex-
ists a trade-off between reducing the amount of work per collection and having
to collect more frequently. Clearly, triggering a collection will have an effect on
subsequent collections. Because GC is invoked sooner due to GCH than without

GCH, additional collections might get introduced. On the other hand, trigger-
ing a collection at an FCP can help reduce the GC overhead. A collection at
an FCP will generally introduce modest pause times compared to collections at
other points. Moreover, triggering a full-heap collection grows the nursery size
and gives objects more time to die, while triggering a nursery collection when few
objects are live will result in the mature generation filling up slower, reducing
the need for more expensive full-heap collections.

To make this complex trade-off, the instrumentation code in the FCPs im-
plements an analytical cost-benefit model. The cost-benefit model estimates the
total GC time for getting from the current FCP to the end of its FCP’s live/time
pattern. The cost-benefit model considers the following three scenarios: (i) do
not trigger a GC in the current FCP, (ii) trigger a full-heap GC, or (iii) trig-
ger a nursery GC. For each of these three scenarios, the cost-benefit model
computes the total GC time (Ctotal,i with i one of the three scenarios above)
by analytically simulating how the heap will evolve through the FCP’s live/time
pattern. The total GC time can be split up in a number of components: Ctotal,i =
CFCP,i+

∑n
j=1 Cprofile,j +Cend. We now explain each component in more detail.

First, the cost-benefit model computes the GC cost in the current FCP under
the following three scenarios:

(i) The cost for not triggering a GC is obviously zero. The available heap size
remains unchanged. So, CFCP,notrigger = 0.

(ii) For computing the cost for triggering a full-heap collection in the current
FCP, we first calculate the number of live bytes at the current FCP, livebytesFCP .
We get this information from the live/time pattern. We subsequently use the
full-heap GC cost function to compute the GC time given the amount of live
data in the current FCP. The available heap size after the current (hypo-
thetical) full-heap collection then equals the maximum heap size minus the
amount of live data in the current FCP. The cost of a full-heap collection at
the current FCP, CFCP,fullheap, can be computed using the linear function
of the form A × x + B where are A and B are derived from Figure 5. So,
CFCP,fullheap = Afullheap × livebytesFCP + Bfullheap.

(iii) To compute the cost for triggering a nursery GC in the current FCP, we
assume that the amount of live bytes in the nursery at that FCP is close to
zero. The GC cost is then computed based on the nursery GC cost function.
This GC cost is incremented by an extra cost due to processing the remem-
bered set. This extra cost is proportional to the size of the remembered set,
which is known at runtime at an FCP. The heap size that was occupied by
the nursery becomes available for allocation. The cost of a nursery collec-
tion at the current FCP, CFCP,nursery, equals (Anursery × livebytesFCP +
Bnursery) + (Aremset × remsetsizeFCP + Bremset) with the A and B coeffi-
cients extracted from Figure 5.

In the second step of the cost-benefit model we compute the cost of addi-
tional collections over the FCP’s live/time pattern for each of the three scenar-
ios. In fact, for each scenario, the cost-benefit model analytically simulates how
the heap will evolve over time when going through an FCP’s live/time pattern.

Therefore, we compute when the (nursery) heap will be full—when the applica-
tion has allocated all memory available in the heap. In case the system would
normally trigger a full collection (i.e., when the nursery size drops below the
given threshold), we need to compute the cost of a full-heap collection. This is
done the same way as above, by getting the amount of live data from the FCP’s
live/time pattern—note that we linearly interpolate the live/time pattern—and
use the full-heap GC cost function to compute its cost. In case the nursery size is
above the given threshold, we need to compute the cost of a nursery collection.
Computing the cost for a nursery collection is done by reading the number of
live bytes from the FCP’s live/time pattern and subtracting the number of live
bytes in the previous GC point; this number gives us an estimate for the amount
of live data in the nursery. This estimated amount of live nursery data is used
through the nursery GC cost function to compute an estimated nursery GC cost.
The number of terms n in

∑n
j=1 Cprofile,j equals the number of analytical sim-

ulations we perform going through the FCP’s live/time pattern. If a sufficient
amount of the heap is still free, or being freed by the simulated GC in the FCP,
it is possible that n = 0.

When the end of the FCP’s live/time pattern is reached within the model, an
end cost Cend is added to the aggregated GC cost calculated so far. The purpose
of the end cost is to take into account whether the next (expected) collection
will be close by or far away. This end cost is proportional to the length of the
FCP’s live/time pattern after the last simulated GC divided by the fraction of
calculated unused nursery space at that same last simulated GC point. The more
data still needs to be allocated, the closer the next GC, the higher the end cost.

After computing all the costs for each of the three scenarios, the scenario
that results in the minimal total cost is chosen. As such, it is decided whether a
nursery, a full-heap or no collection needs to be triggered in the current FCP.

Note that the cost-benefit model presented above is specifically developed
for GenMS and GenCopy, two Appel-style generational garbage collectors with a
variable nursery size. However, a similar cost-benefit model could be constructed
for other collectors.

3.4 GCH across inputs

GCH is a profile-driven garbage collection method which implies that the input
used for the offline profiling run is typically different from the input used during
online execution. Getting GCH to work across inputs needs a few enhancements
since the size and the height of an FCP’s live/time pattern varies across inputs;
the general shape of the FCP’s live/time pattern however is relatively insensitive
to the given input. We define the height of an FCP’s live/time pattern as the
difference in live data at the top of an FCP’s live/time pattern and at the FCP
itself. For example, for 213 javac, see Figure 1, the height is approximately
6MB. The size of an FCP’s live/time pattern is defined as the number of allocated
bytes at an FCP’s live/time pattern; this is approximately 60MB for 213 javac,
see also Figure 1. To address this cross-input issue we just scale the size and the
height of the FCP live/time pattern. In practice, the amount of live data at the

18 22 26 30 34 38 42 46 50 54

_202_jess, GC time, −s10 to −s100

heap size in MB

pe
rc

en
ta

ge
 re

du
ct

io
n

0
40

80

30 62 94 142 190 238 286 334

_209_db, GC time, −s10 to −s100

heap size in MB

pe
rc

en
ta

ge
 re

du
ct

io
n

0
40

80

36 52 68 84 108 132 156 180

_213_javac, GC time, −s10 to −s100

heap size in MB

pe
rc

en
ta

ge
 re

du
ct

io
n

0
40

80

32 48 64 80 96 120 144 168 192

GenMS
GenCopy

_227_mtrt, GC time, −s10 to −s100

heap size in MB

pe
rc

en
ta

ge
 re

du
ct

io
n

0
40

80

Fig. 6. Reduction in time spent in garbage collection through GCH across in-
puts. The profile input is -s10; the reported results are for -s100. Benchmark-
specific GC cost functions are used.

top of an FCP’s live/time pattern can be computed at runtime when a GC is
triggered at the top of an FCP’s live/time pattern. The amount of allocated
bytes over an FCP’s live/time pattern can be computed at run-time as well.
These scaling factors are then to be used to rescale the data in the FCP live/time
pattern.

4 Evaluation

This section evaluates GCH through a number of measurements. First, we mea-
sure the GC time reduction. Second, we evaluate the impact on overall perfor-
mance. Third, we quantify the impact on pause time. Fourth, we compare forced
GC versus GCH. Finally, we quantify the runtime overhead due to GCH.

4.1 Garbage collection time

In order to evaluate the applicability of GCH, we have set up the following
experiment. We used the profile information from the -s10 run to drive the
execution of the -s100 run after cross-input rescaling as discussed in section 3.4.

Figure 6 shows the reduction through GCH in GC time over a range of heap
sizes where reduction is defined as 100× (1− timeGCH

timeold
). Each reduction number

is an average number over three runs; numbers are shown for both GenMS and
GenCopy. Figure 6 shows that GCH improves GC time for both collectors and for
nearly all heap sizes. For both collectors, GCH achieves substantial speedups in
terms of garbage collection time, up to 29X for 213 javac and 10X for 209 db.

The sources for these speedups are twofold. First, GCH generally results
in fewer collections than without GCH, see Table 2 which shows the average

GenMS collector GenCopy collector
Full-heap Nursery Full-heap Nursery

Benchmark no GCH GCH no GCH GCH no GCH GCH no GCH GCH

202 jess 0 1 245 186 2 3 349 294
209 db 1 3 16 14 2 4 25 25
213 javac 2 2 80 62 6 5 93 61
227 mtrt 0 1 45 36 2 2 81 67

Table 2. The average number of garbage collections across all heap sizes with
and without GCH.

number of GCs over all heap sizes; we observe fewer GCs with GCH for all
benchmarks except one, namely 209 db for which the number of collections
remains unchanged with and without GCH (we will discuss 209 db later on).
For 213 javac we observe a 30% reduction in the number of collections. The
second reason for these GC time speedups is the reduced work at each point of
GC. This was already mentioned in Figure 4.

For 202 jess, GCH only occasionally triggers a collection for heap sizes
larger than 44MB for GenMS. GCH then causes the same GC pattern as running
without GCH, as the non-GCH directed pattern already is the optimal one.

Note that for 209 db, GCH is capable of substantially reducing the GC time
for large heap sizes. The reason is not the reduced number of collections, but
the intelligent selection of full-heap collections instead of nursery collections.
The underlying reason is that 209 db suffers from a very large remembered set.
GCH triggers more full-heap collections that do not suffer from having to process
remembered sets, see Table 2. A full-heap collection typically only takes 250ms
for this application whereas a nursery collection can take up to 2,000ms, see
Figure 4. Note that the remembered set increases with larger heap sizes which
explains the increased speedup for larger heap sizes. While the large remembered
sets themselves are the consequence of the fact that JMTk uses sequential store
buffers without a space cap, it shows that our analytical framework is robust in
the face of extreme cases like this.

For 213 javac, GCH reduces the total number of collections. In addition, the
cost of a nursery collection at an FCP is much cheaper than a nursery collection
at another execution point because less data needs to be scanned and copied.
As mentioned with our introductory example in Figure 1, at most 126KB needs
to be copied at an FCP which takes about 4.5ms while up to 12MB needs to
be copied otherwise, which takes about 225ms. From heap sizes of 132MB on,
no other GCs are required than those triggered by GCH. As a direct result, the
collector’s performance improves by a factor 29.

Remind that because of the way Jikes RVM works, the heap contains both
application data and VM data. We believe that our technique would be even
more effective in a system where the collector does not have to trace VM data.
In such a system, full-heap collections would generally be cheaper opening up
extra opportunities to replace nursery collections by full-heap collections.

18 22 26 30 34 38 42 46 50 54

_202_jess, execution time, −s10 to −s100

heap size in MB

pe
rc

en
ta

ge
 re

du
ct

io
n

0
5

15

30 62 94 142 190 238 286 334

_209_db, execution time, −s10 to −s100

heap size in MB

pe
rc

en
ta

ge
 re

du
ct

io
n

0
5

10

36 52 68 84 108 132 156 180

_213_javac, execution time, −s10 to −s100

heap size in MB

pe
rc

en
ta

ge
 re

du
ct

io
n

0
4

8
14

32 48 64 80 96 120 144 168 192

GenMS
GenCopy

_227_mtrt, execution time, −s10 to −s100

heap size in MB

pe
rc

en
ta

ge
 re

du
ct

io
n

0
5

10

Fig. 7. Performance improvement in total execution time through GCH across
inputs. The profile input is -s10; the reported results are for -s100. Benchmark-
specific GC cost functions are used.

4.2 Overall execution time

Figure 7 depicts the impact of GCH on the overall execution time. For 227 mtrt,
the total execution time is more or less unaffected through GCH because the
time spent collecting garbage is only a small fraction of the total execution
time. The small slowdowns or speedups observed for 227 mtrt are probably
due to changing data locality behavior because of the changed GCs. However,
for 202 jess, 209 db and 213 javac, performance improves by up to 5.7%,
10.5% and 12.5%, respectively. For these benchmarks, the GC time speedups
translate themselves in overall performance speedup.

4.3 Generic cost functions

So far we assumed application-specific GC cost functions, i.e., the cost function
for a nursery collection and a full-heap collection as well as the cost associated
with scanning the remembered set was assumed to be application-specific. This
is a viable assumption for application-specific designs. However, for application-
domain specific (involving multiple applications) or general-purpose systems,
this may no longer be feasible. Figures 8 and 9 evaluate the performance of GCH
in case cross-application GC cost functions are employed instead of application-
specific GC cost functions; this is done for the garbage collection time as well
as for the overall execution time, respectively. Comparing these figures against
Figures 6 and 7, we observe that there is no significant difference between the
performance that is obtained from application-specific versus generic cost func-
tions. As such, we conclude that GCH is robust to generic cost functions.

18 22 26 30 34 38 42 46 50 54

_202_jess, GC time, −s10 to −s100

heap size in MB

pe
rc

en
ta

ge
 re

du
ct

io
n

0
40

80

30 62 94 142 190 238 286 334

_209_db, GC time, −s10 to −s100

heap size in MB

pe
rc

en
ta

ge
 re

du
ct

io
n

−2
0

40
80

36 52 68 84 108 132 156 180

_213_javac, GC time, −s10 to −s100

heap size in MB

pe
rc

en
ta

ge
 re

du
ct

io
n

0
40

80

32 48 64 80 96 120 144 168 192

GenMS
GenCopy

_227_mtrt, GC time, −s10 to −s100

heap size in MB

pe
rc

en
ta

ge
 re

du
ct

io
n

0
40

80
Fig. 8. Reduction in time spent in garbage collection through GCH across inputs
using generic cost functions. The profile input is -s10; the reported results are
for -s100.

18 22 26 30 34 38 42 46 50 54

_202_jess, execution time, −s10 to −s100

heap size in MB

pe
rc

en
ta

ge
 re

du
ct

io
n

0
5

15

30 62 94 142 190 238 286 334

_209_db, execution time, −s10 to −s100

heap size in MB

pe
rc

en
ta

ge
 re

du
ct

io
n

0
5

10

36 52 68 84 108 132 156 180

_213_javac, execution time, −s10 to −s100

heap size in MB

pe
rc

en
ta

ge
 re

du
ct

io
n

0
4

8
14

32 48 64 80 96 120 144 168 192

GenMS
GenCopy

_227_mtrt, execution time, −s10 to −s100

heap size in MB

pe
rc

en
ta

ge
 re

du
ct

io
n

0
5

15

Fig. 9. Performance improvement in total execution time through GCH across
inputs using generic cost functions. The profile input is -s10; the reported results
are for -s100.

 10

 100

 1000

 10000

 0 50 100 150 200 250 300 350

m
ax

im
um

 p
au

se
 ti

m
e

in
 m

s

heap size in MB

All benchmarks, GenMS, nursery collections

nursery collections with GCH
nursery collections without GCH

 100

 1000

 0 50 100 150 200 250 300 350

m
ax

im
um

 p
au

se
 ti

m
e

in
 m

s

heap size in MB

All benchmarks, GenMS, full-heap collections

full-heap collections with GCH
full-heap collections without GCH

Fig. 10. The maximum pause time with and without GCH. The graph on the
left shows the maximum pause time for nursery collections; the graph on the
right shows the maximum pause time for full-heap collections.

4.4 Pause time

An important metric when evaluating garbage collection techniques is pause
time. Pause time is especially important for interactive and (soft) real-time ap-
plications. Figure 10 presents the maximum pause times over all benchmark
runs as a function of the heap size. We make a distinction between nursery and
full-heap collections, and between with-GCH and without-GCH. The graphs
show that the maximum pause time is reduced (or at least remains unchanged)
through GCH. Note that the vertical axes are shown on a logarithmic scale. As
such, we can conclude that GCH substantially reduces the maximum pause time
that is observed during program execution.

4.5 Forced versus automatic garbage collection

A programmer can force the VM to trigger a GC by calling the java.lang.-
System.gc() method. We refer to such collections as forced garbage collections.
One of the benchmarks that we studied, namely 213 javac, triggers forced
GCs. When run with -s100 -m4 -M4, 21 forced GCs are triggered. Figure 11
shows the GC times normalized to the fastest time for 213 javac using the
GenCopy collector for a range of heap sizes. The graph depicts the collection
times under four scenarios: the VM ignores forced collections, the forced collec-
tions are nursery collections, the forced GCs are full-heap collections, and GCH
is enabled. According to Figure 11, forced collections can either improve or re-
duce performance compared to not using forced collections. More specifically, if
the forced GCs are full-heap collections, performance is typically reduced; if the
forced GCs are nursery collections, performance typically improves—for large
heap sizes, performance even improves dramatically. Another important obser-
vation from Figure 11 is that GCH performs better than all other strategies for
all heap sizes. This can be explained by the fact that while there are 21 forced

 1

 10

 100

 40 60 80 100 120 140 160 180 200
no

rm
al

iz
ed

 c
ol

le
ct

io
n

tim
e

heap size in Mb

_213_javac, GenCopy

no forced collections
forced full-heap collections
forced nursery collections

garbage collection hints

Fig. 11. Garbage collection time under forced garbage collection versus auto-
matic garbage collection versus GCH.

collections, there are only 15 FCPs (see Figure 1). GCH correctly triggers no
more than 15 times and takes the current state of the heap into account when
making GC decisions. In summary, there are three reasons why GCH is preferable
over forced collections. First, in large applications it can be difficult to identify
favorable collection points without automated program analysis as presented in
this paper. Second, forced GCs, in contrast to GCH, do not take into account
the available heap size when deciding whether a GC should be triggered. Third,
in our experimental setup, GCH is capable of deciding how garbage should be
collected at runtime, i.e., whether a nursery or full-heap collection should be
triggered which is impossible through forced GCs.

4.6 Run-time system overhead

To explore the run-time overhead of our system, we compare the performance
of a without-GCH Jikes RVM versus a with-GCH Jikes RVM. In the with-GCH
version, the profile information is read, the FCPs are instrumented and at each
invocation of an FCP the cost-benefit model is computed, however, it will never
trigger a collection. For computing the overhead per benchmark, each benchmark
is run multiple times and the average overhead is computed over these runs.
Table 3 shows the average overhead over all heap sizes with both collectors. The
average overhead over all benchmarks is 0.3%; the maximum overhead is 1.3%
for 227 mtrt. The negative overheads imply that the application ran faster
with instrumentation that without instrumentation. We thus conclude that the
overhead of GCH is negligible.

5 Related work

We now discuss previously proposed GC strategies that are somehow related to
GCH, i.e., all these approaches implement a mechanism to decide when or how

Benchmark GenMS GenCopy

202 jess -0.1% 0.8%
209 db 0.0% -0.6%
213 javac 0.2% 0.3%
227 mtrt 1.3% 0.6%

Table 3. The run-time overhead of GCH.

to collect. The work presented in this paper differs from previous work in that
we combine the decision of both when and how to collect in a single framework.

The Boehm-Demers-Weiser (BDW) [8] garbage collector and memory alloca-
tor include a mechanism that determines whether to collect garbage or to grow
the heap. The decision whether to collect or grow the heap is based on a static
variable called the free space divisor (FSD). If the amount of heap space allo-
cated since the last garbage collection exceeds the heap size divided by FSD,
garbage is collected. If not, the heap is grown. Brecht et al. [9] extended the
BDW collector by taking into account the amount of physical memory available
and by proposing dynamically varying thresholds for triggering collections and
heap growths.

Wilson et al. [10] observe that (interactive) programs have phases of operation
that are compute-bound. They suggest that tagging garbage collection onto the
end of larger computational pauses, will not make those pauses significantly more
disruptive. While the main goal of their work is to avoid or mitigate disruptive
pauses, they reason that at these points, live data is likely to be relatively small
since objects representing intermediate results of the previous computations have
become garbage. They refer to this mechanism as scavenge scheduling but present
no results.

More recently, Ding et al. [11] presented preliminary results of a garbage col-
lection scheme called preventive memory management that also aims to exploit
phase behavior. They unconditionally force a garbage collection at the beginning
of certain execution phases. In addition, they avoid garbage collections in the
middle of a phase by growing the heap size unless the heap size reaches the hard
upper bound of the available memory. They evaluated their idea using a single
Lisp program and measured performance improvements up to 44%.

Detlefs et al. [13] present the garbage-first garbage collectors which aims at
satisfying soft real-time constraints. Their goal is to spend no more than x ms
during garbage collection for each y ms interval. This is done by using a collector
that uses many small spaces and a concurrent marker that keeps track of the
amount of live data per space. The regions containing most garbage are then
collected first. In addition, collection can be delayed in their system if they risk
violating the real-time goal.

Velasco et al. [14] propose a mechanism that dynamically tunes the size of
the copy reserve of an Appel collector [2]. Tuning the copy reserve’s size is done
based on the ratio of surviving objects after garbage collection. Their technique
achieves performance improvements of up to 7%.

Stefanovic et al. [15] evaluate the older-first generational garbage collector
which only copies the oldest objects in the nursery to the mature generation.
The youngest objects are not copied yet; they are given enough time to die in
the nursery. This could be viewed of as a way deciding when to collect.

Recent work [16,17,18] selects the most appropriate garbage collector during
program execution out of a set of available garbage collectors. As such, the
garbage collector is made adaptive to the program’s dynamic execution behavior.
The way GCH triggers nursery or full-heap collections could be viewed as a
special form of what these papers proposed.

6 Summary and future work

This paper presented garbage collection hints which is a profile-directed ap-
proach to guide garbage collection. The goal of GCH is to guide in terms of
when and how to collect. GCH uses offline profiling to identify favorable col-
lection points in the program code where the amount of live data is relatively
small (in order to reduce the amount of work per collection) and the amount of
dead bytes is relatively large (in order to increase the amount of available heap
after collection). Triggering collections in these FCPs can reduce the number of
collections as well as the amount of work per collection. Next to guiding when to
collect, GCH also uses an analytical cost-benefit model to decide how to collect,
i.e., whether to trigger a nursery or a full-heap collection. This decision is made
based on the available heap size, and the cost for nursery and full-heap collec-
tions. Our experimental results using SPECjvm98 showed substantial reductions
in GC time (up to 29X) and significant overall performance improvements (more
than 10%); similar speedups are obtained for application-specific as well as cross-
application, generic GC cost functions. In addition, we also showed that GCH
dramatically reduces maximum pause times. And finally, we showed that, for
a specific benchmark, GCH improves overall performance compared to forced
programmer-inserted garbage collections.

In future work, we plan to extend and evaluate GCH for other collectors than
the ones considered here. We also plan to study dynamically inserted garbage
collection hints in which profiling is done online during program execution.

Acknowledgments

Dries Buytaert is supported by a grant from the Institute for the Promotion of
Innovation by Science and Technology in Flanders (IWT). Kris Venstermans is
supported by a BOF grant from Ghent University, Lieven Eeckhout is a Postdoc-
toral Fellow of the Fund for Scientific Research—Flanders (Belgium) (FWO—
Vlaanderen). Ghent University is a member of the HiPEAC network. This work
is an extended version of previous work [12]. We thank the reviewers for their
insightful comments.

References

1. Blackburn, S.M., Cheng, P., McKinely, K.S.: Myths and realities: the performance
impact of garbage collection. In: Proceedings of SIGMETRICS’04, ACM (2004)

2. Appel, A.W.: Simple generational garbage collection and fast allocation. Software
practices and experience 19 (1989) 171–183

3. Blackburn, S.M., Cheng, P., McKinley., K.S.: Oil and water? High performance
garbage collection in Java with JMTk. In: Proceedings of ICSE’04. (2004) 137–146

4. Alpern, B., Attanasio, C.R., Barton, J.J., Burke, M.G., Cheng, P., Choi, J.D.,
Cocchi, A., Fink, S.J., Grove, D., Hind, M., Hummel, S.F., Lieber, D., Litvinov,
V., Mergen, M.F., Ngo, T., Russell, J.R., Sarkar, V., Serrano, M.J., Shepherd, J.C.,
Smith, S.E., Sreedhar, V.C., Srinivasan, H., Whaley, J.: The Jalapeño Virtual
Machine. IBM Systems Journal 39 (2000) 211–238

5. Browne, S., Dongarra, J., Garner, N., Ho, G., Mucci, P.: A portable programming
interface for performance evaluation on modern processors. The international jour-
nal of high performance computing applications 14 (2000) 189–204

6. Hertz, M., Blackburn, S.M., Moss, J.E.B., McKinley, K.S., Stefanovic, D.: Error
free garbage collection traces: how to cheat and not get caught. In: Proceedings of
SIGMETRICS’02, ACM (2002) 140–151

7. Lindholm, T., Yellin, F.: The Java Virtual Machine Specification (second edition).
Addison-Wesley (1999)

8. Boehm, H., Weiser, M.: Garbage collection in an uncooperative environment.
Software practices and experience 18 (1988) 807–820

9. Brecht, T., Arjomandi, E., Li, C., Pham, H.: Controlling garbage collection and
heap growth to reduce the execution time of Java applications. In: Proceedings of
OOPSLA’01, ACM (2001) 353–366

10. Wilson, P.R., Moher, T.G.: Design of the opportunistic garbage collector. In:
Proceedings of OOPSLA’89, ACM (1989) 23–35

11. Ding, C., Zhang, C., Shen, X., Ogihara, M.: Gated memory control for memory
monitoring, leak detection and garbage collection. In: Proceedings of MSP’05,
ACM (2005) 62–67

12. Buytaert, D., Venstermans, K., Eeckhout, L., De Bosschere, K.: Garbage collection
hints. In: Proceedings of HiPEAC’05, LNCS 3793 (2005) 233–348

13. Detlefs, D., Flood, C., Heller, S., Printezis, T.: Garbage-first garbage collection.
In: Proceedings of ISMM’04, ACM (2004) 37–48

14. J. M. Velasco, K. Olcoz, F.T.: Adaptive tuning of reserved space in an Appel
collector. In: Proceedings of ECOOP’04, ACM (2004) 543–559

15. Stefanovic, D., Hertz, M., Blackburn, S.M., McKinley, K.S., Moss, J.E.B.: Older-
first garbage collection in practice: evaluation in a Java virtual machine. In: Pro-
ceedings of MSP’02, ACM (2002) 25–36

16. Andreasson, E., Hoffmann, F., Lindholm, O.: Memory management through ma-
chine learning: to collect or not to collect? In: Proceedings of JVM’02, USENIX
(2002)

17. Printezis, T.: Hot-swapping between a mark&sweep and a mark&compact garbage
collector in a generational environment. In: Proceedings of JVM’01, USENIX
(2001)

18. Soman, S., Krintz, C., Bacon, D.F.: Dynamic selection of application-specific
garbage collectors. In: Proceedings of ISMM’04, ACM (2004) 49–60

	GCH: Hints for Triggering Garbage Collections
	Dries Buytaert, Kris Venstermans, Lieven Eeckhout, Koen De Bosschere

