
Bottleneck Analysis in Java Applications using Hardware
Performance Monitors

Dries Buytaert Andy Georges Lieven Eeckhout Koen De Bosschere

Department of Electronics and Information Systems (ELIS), Ghent University
St.-Pietersnieuwstraat 41, B-9000 Gent, Belgium

{dbuytaer,ageorges,leeckhou,kdb}@elis.ugent.be

ABSTRACT
This poster presents MonitorMethod which helps Java
programmers gain insight in the behavior of their applica-
tions. MonitorMethod instruments the Java application
and relates hardware performance monitors (HPMs) to the
methods in the Java application’s source code. We present
a detailed case study showing that linking microprocessor-
level performance characteristics to the source code is help-
ful for identifying performance bottlenecks and their causes.
In addition, we relate our work to a previously proposed
time-based HPM profiling framework.

Categories and Subject Descriptors
C.4 [Computer systems organization]: Performance of
systems

General Terms
Design, Performance

Keywords
Java, performance analysis, profiling, phase behavior

1. INTRODUCTION
Profilers are essential tools for programmers to analyze

their programs’ performance. Very few profilers exploit the
hardware performance monitors (HPMs) that are typically
available on modern processors. HPMs are interesting be-
cause they count microprocessor events such as cache misses,
branch mispredictions and so on.

Sweeney et al. [2] presented a system that logs HPM values
to a trace file at each virtual context switch and developed
a tool for graphically exploring these traces. More recently,
we studied method-level phases in Java workloads [1] using
a similar HPM trace mechanism. A method-level phase is

Copyright is held by the author/owner.
OOPSLA’04,Oct. 24-28, 2004, Vancouver, British Columbia, Canada.
ACM 1-58113-833-4/04/0010.

defined as a subtree of the application’s call graph (phases
can be hierarchical). The toolset to identify those method-
level phases is called MonitorMethod. The major differ-
ence between Sweeney et al.’s work and MonitorMethod,
is that MonitorMethod collects HPM values for selected
method calls, whereas Sweeney et al. collect HPM values
at each virtual context switch. MonitorMethod allows
for instrumenting user-selected methods as well as auto-
matically determined method-level program phases.

In this work, we combine and compare Sweeney et al.’s
work with MonitorMethod to trace HPM values at both
virtual context switches and method calls. As such, we show
how the method-level phases as identified using Monitor-
Method relate to the time-dependent behavior of program
execution as measured by Sweeney et al. By doing so, we
strengthen our statement that MonitorMethod is a use-
ful toolset to identify performance bottlenecks. In addition,
by linking the HPM values to the source code we are able
to point to the bottlenecks’ causes. Our prototype imple-
mentation of MonitorMethod is built within IBM’s Jikes
Research Virtual Machine (Jikes RVM) and is evaluated on
an IA-32 platform using the SPECjvm98 and SPECjbb2000
benchmarks.

2. PROFILING USING HPMS
This section discusses two recently proposed Java appli-

cation profiling mechanisms: the time-dependent behavior
analysis by Sweeney et al. and the method-level phases in
MonitorMethod.

2.1 Time-dependent behavior
As explained, Sweeney et al. use a time-based sampling

mechanism in which a per-processor HPM record is captured
every thread scheduler quantum. At each context switch,
they log the top-most method on the runtime stack. As such,
the measured HPM values can be attributed to the Java
threads, and to a lesser extend, to methods in the source
code.

2.2 Method-level phase behavior
MonitorMethod identifies and instruments method-level

phases using the procedure discussed in [1]. For a method
to represent a phase, its total execution time over all in-
vocations must exceed a threshold θweight and its average
execution time per call must exceed a threshold θgrain. The
thresholds are chosen such that useful method-level phase
behavior is obtained while keeping the instrumentation over-



method / phase region time CPI L1-D L1-I L2-D L2-I BMP

SourceClass.check 3 7.06% 2.25 8.06 13.13 1.74 1.75 23.20
SourceClass.compileClass 3 26.03% 1.74 5.14 6.53 0.98 0.85 16.26

Garbage collector 1 28.99% 1.80 4.48 0.02 2.55 0.01 4.76
Parser.parseClass 2 22.68% 1.48 2.93 5.52 0.54 0.44 18.26

Benchmark average n/a n/a 1.67 4.28 4.48 1.32 0.66 13.26

Figure 1: The graph and the table present some example phases in a 213 javac -s100 run. The time is given
as a percentage of the total execution time. The cache miss rates (L1-D, L1-I, L2-D and L2-I) and the BMP
are given as the number of events per 1,000 instructions.

head of the selected methods small. In [1], we have shown
that this technique selects phases that exhibit similar behav-
ior within a phase and dissimilar behavior between different
phases.

MonitorMethod works in three steps. First, we mea-
sure the execution time for each method call. In a second
step, this information is analyzed and method-level phases
are identified for a given pair of θweight and θgrain. Once a
list of method-level phases is determined, we collect HPM
values for each of them. To this extend, we modified both
the baseline and the optimizing compiler to instrument the
prologue and epilogue of the selected methods. In order to
combine and compare MonitorMethod with Sweeney et
al.’s work, we instrumented the thread scheduler as well.
The added instrumentation code reads the HPM values and
writes them to a trace file.

3. PERFORMANCE ANALYSIS
Performance analysis is done by an off-line tool that takes

the final trace as input. The output of the analysis helps
answer three fundamental questions programmers might ask
when optimizing their application: (i) what are the appli-
cation’s bottlenecks, (ii) why do the bottlenecks occur, and
(iii) when do the bottlenecks occur?

Figure 1 shows a graph that plots 213 javac’s cycles per
instruction (CPI) over time. The vertical separators group
phases in regions with similar performance characteristics.
Note that 213 javac with the -s100 input set compiles four
times the same Java classes. Profile information captured at
each virtual context switch is used to aggregate all profiling
data into a single graph. To answer the first question (what
is the bottleneck?), we ordered the phases by their CPI val-
ues as shown in the table of Figure 1. Methods whose CPI is
worse than the average CPI, are potential bottlenecks. Due
to space constraints the table depicts a subset of all phases
only. To answer the second question (why does the bottle-

neck occur?), one can investigate the corresponding metrics
such as cache miss rates and the branch misprediction rate
(BMP), see the table in Figure 1. Finally, to answer the last
question (when does the bottleneck occur?), one can use re-
gion information to relate phases to the time behavior of an
application, see also Figure 1.

4. SUMMARY
We developed a system that bridges the gap between pro-

filers for Java applications and HPMs by attributing perfor-
mance characteristics to the source code. We compared our
work with that of Sweeney et al. and demonstrated how it
can be used to identify and analyze performance bottlenecks.

5. ACKNOWLEDGMENTS
Dries Buytaert is supported by a grant from the Institute

for the Promotion of Innovation by Science and Technology
in Flanders (IWT). Andy Georges is supported by the IWT
in the CoDAMoS project, Lieven Eeckhout is a Postdoctoral
Fellow of the Fund for Scientific Research—Flanders (Bel-
gium) (FWO—Vlaanderen). This research was also funded
by Ghent University.

6. REFERENCES
[1] A. Georges, D. Buytaert, L. Eeckhout, and K. De

Bosschere. Method-level phase behavior in Java
workloads. In Proceedings of the ACM SIGPLAN
Conference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA’04). ACM
Press, October 2004.

[2] Peter F. Sweeney, Matthias Hauswirth, Brendon
Cahoon, Perry Cheng, Amer Diwan, David Grove, and
Michael Hind. Using hardware performance monitors to
understand the behavior of Java applications. In
Proceedings of the Third Virtual Machine Research and
Technology Symposium (VM’04). USENIX, May 2004.


