Method-Level Phase Behavior in Java Workloads

Andy Georges Dries Buytaert

Lieven Eeckhout

Koen De Bosschere

Department of Electronics and Information Systems (ELIS), Ghent University
St.-Pietersnieuwstraat 41, B-9000 Gent, Belgium

{ageorges,dbuytaer,leeckhou,kdb}@elis.ugent.be

ABSTRACT

Java workloads are becoming more and more prominent on
various computing devices. Understanding the behavior of
a Java workload which includes the interaction between the
application and the virtual machine (VM), is thus of primary
importance during performance analysis and optimization.
Moreover, as contemporary software projects are increasing
in complexity, automatic performance analysis techniques
are indispensable. This paper proposes an off-line method-
level phase analysis approach for Java workloads that con-
sists of three steps. In the first step, the execution time
is computed for each method invocation. Using an off-line
tool, we subsequently analyze the dynamic call graph (that
is annotated with the method invocations’ execution times)
to identify method-level phases. Finally, we measure perfor-
mance characteristics for each of the selected phases. This
is done using hardware performance monitors. As such,
our approach allows for linking microprocessor-level infor-
mation at the individual methods in the Java application’s
source code. This is extremely interesting information dur-
ing performance analysis and optimization as programmers
can use this information to optimize their code. We eval-
uate our approach in the Jikes RVM on an [A-32 platform
using the SPECjvm98 and SPECjbb2000 benchmarks. This
is done according to a number of important criteria: the
overhead during profiling, the variability within and between
the phases, its applicability in Java workload characteriza-
tion (measuring performance characteristics of the various
VM components) and application bottleneck identification.

Categories and Subject Descriptors

C.4 [Performance of Systems]|: design studies, measure-
ment techniques, performance attributes

General Terms

Measurement, Performance, Experimentation

Permission to make digital or hard copies of all or part of this work for

Keywords

workload characterization, performance analysis, Java work-
loads, virtual machine technology

1. INTRODUCTION

The execution of a Java application involves a complex
interaction between the Java code and the virtual machine
(VM). Consequently the behavior that is observed at the
micro-architectural level when executing Java workloads is
not just a function of the application or the VM, but of the
interaction between both. In addition to that, the appli-
cations themselves are growing in size and complexity and
VM’s are complex as well consisting of a number of sub-
components to drive the managed run-time system, such as
the interpreter, compiler, optimizer, garbage collector, class
loader, finalizer, thread scheduler, etc. As a result of that,
understanding the behavior of a Java workload is non-trivial
which increases the demand for automatic approaches to an-
alyze Java workload behavior.

The purpose of this paper is to study method-level phase
behavior in Java workloads. The notion of a phase is de-
fined as a set of parts of the program execution with sim-
ilar behavior which do not necessarily need to be tempo-
rally adjacent. The underlying assumption of method-level
phase behavior is that phases of execution correspond to
the code that gets executed. In particular, different meth-
ods are likely to result in dissimilar behavior and different
invocations of the same method are likely to result in sim-
ilar behavior. There has been some work in the literature
that studies whether methods are of an appropriate granu-
larity to detect program phase behavior [6, 17, 20]. Those
studies did show that the method level is at least as good as
lower levels (basic block level and loop level) especially for
applications with lots of method calls in which each method
is quite small [20]. And this is the case for object-oriented
workloads, such as Java [24]. In other words, the granularity
of method-level phases is course-grained enough to identify
major phases, and at the same time is fine-grained enough
to provide sufficient detail.

Our method-level phase behavior analysis is an off-line
analysis that consists of three steps. In a first step, we de-
termine how much time the Java workload spends in dif-

personal or classroom use is granted without fee provided that copies areferent portions or methods of the application. This is done
not made or distributed for profit or commercial advantage and that copies by instrumenting all methods to read microprocessor per-
bear this notice and the full citation on the first page. To copy otherwise, t0 formance counter values to track the amount of time that is

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.

OOPSLA'040Oct. 24-28, 2004, Vancouver, British Columbia, Canada.

Copyright 2004 ACM 1-58113-831-8/04/001(5.00.

spent in each method. The result of this first step is an an-
notated dynamic call graph. Using an offline analysis (step
2) we then determine the methods in which the application

component subcomponent description
memory hierarchy L1 I-cache 64KB two-way set-associative, 64-byte lines, LRU replacement
with next line prefetching
L1 D-cache 64KB two-way set-associative, 8 banks with 8-byte lines, LRU
write-allocate, write-back, two access ports 64 bits each
L2 cache 256KB 16-way set-associative, unified, on-chip, exclusive
L1 I-TLB 24 entries, fully associative
L2 I-TLB 256 entries, four-way set-associative
L1 D-TLB 32 entries, fully associative
L2 D-TLB 256 entries, four-way set-associative
branch prediction BTB branch target buffer, two-way set-associative, 2048 entries

RAS return address stack, 12 entries
taken/not-taken | gshare 2048-entry branch predictor with 2-bit counters

system design bus 266MHz, 2.1GiB per second
pipeline stages integer 10 cycles
floating-point 15 cycles
integer pipeline pipeline 1 integer execution unit and address generation unit
also allows integer multiply
pipeline 2 integer execution unit and address generation unit
pipeline 3 idem
floating-point pipeline | pipeline 1 3DNow! add, MMX ALU/shifter and floating-point add
pipeline 2 3DNow!/MMX multiply/reciprocate, MMX ALU and
floating-point multiply/divide/square root
pipeline 3 floating-point constant loads and stores

Table 1: The AMD Athlon XP microprocessor summary.

spends a significant portion of its total execution time with
the additional constraint that one invocation of the method
takes a significant portion of the total execution time as well.
This is to avoid selecting methods that are too small. Dur-
ing a second run of the application (step 3), these selected
methods are instrumented and performance characteristics
are measured. Measuring these performance characteristics
is done using the hardware performance counters. In this
step, we measure a number of characteristics such as branch
misprediction rate, cache miss rate, number of retired in-
structions per cycle, etc. As such, we obtain detailed perfor-
mance characteristics for the major method-level execution
phases of the Java application. In addition to the method-
level phases, we also measure performance characteristics for
major parts of the VM, such as the compiler/optimizer, the
garbage collector, the class loader, the finalizer, etc.

There are several interesting applications for this work.
First, for application programmers it is important to under-
stand the behavior of the Java workload in all its complex-
ity in order to optimize its performance. Using automatic
techniques to characterize Java workloads can be helpful to
identify performance bottlenecks with limited effort. Sec-
ond, for VM developers, automatic workload characteriza-
tion helps to get insight in how a Java application interacts
with its VM, which allows improving the performance of the
VM under development. Third, our approach also provides
interesting insights into phase behavior. Detecting program
execution phases and exploiting them has received increased
attention in recent literature. Various authors have pro-
posed ways of exploiting phase behavior. One example is
to adapt the available hardware resources to reduce energy
consumption while sustaining the same performance [6, 10,
26, 17]. Another example is to use phase information to
guide simulation-driven processor design [25]. The idea is to

select one single sample from each phase for simulation in-
stead of the complete benchmark execution. On the software
side, JIT compilers in VM’s [3, 4] and dynamic optimization
frameworks [5, 22] heavily rely on implicit phase behavior
to optimize code. Fourth, in future work we plan to build a
performance model to estimate Java performance. In such
a model, performance models of different Java components
need to be combined to form an overall performance model
of the Java application. We believe that the granularity of
method-level phases that are identified in this paper will be
the right choice for this purpose.

This paper is organized as follows. The next section de-
tails on our experimental setup. Section 3 discusses our off-
line approach for identifying method-level phase behavior.
Section 4 discusses the statistical data analysis techniques
that we have used to quantify the variability between and
within phases. The results of our phase analysis are pre-
sented in section 5. Section 6 discusses related work. Fi-
nally, we conclude in section 7.

2. EXPERIMENTAL SETUP

In this section we discuss the experimental setup: our
hardware platform, the use of performance counters, Jikes
RVM in which all experiments are done, and the Java appli-
cations that are used in the evaluation section of this paper.

2.1 Hardware platform

In this paper we use the AMD Athlon XP microproces-
sor for our measurements, see Table 1. The AMD Athlon
XP is a superscalar microprocessor implementing the IA-32
instruction set architecture (ISA). It has a pipelined mi-
croarchitecture in which up to three x86 instructions can be
fetched. These instructions are fetched from a large prede-
coded 64KB L1 instruction cache (I-cache). For dealing with

the branches in the instruction stream, branch prediction is
done using a global history (gshare) based taken/not-taken
branch predictor, a branch target buffer (BTB) and a return
address stack (RAS). Once fetched, each (variable-length)
x86 instruction is decoded into a number of simpler (and
fixed-length) macro-ops. Up to three x86 instructions can
be translated per cycle.

These macro-ops are then passed to the next stage in
the pipeline, the instruction control unit (ICU) which ba-
sically consists of a 72-entry reorder buffer. From this re-
order buffer, macro-ops are scheduled into an 18-entry in-
teger scheduler and a 36-entry floating-point scheduler for
integer and floating-point operations, respectively. The 18-
entry integer scheduler is organized as a collection of three
6-entry deep reservation stations, each reservation station
serving an integer execution unit and an address generation
unit. The 36-entry floating-point scheduler (FPU: floating-
point unit) serves three floating-point pipelines executing
x87, MMX and 3DNow! operations. In the schedulers, the
macro-ops are broken down to ops which can execute out-
of-order. Next to these schedulers, the AMD K7 microarchi-
tecture also has a 44-entry load-store unit. The load-store
unit consists of two queues, a 12-entry queue for L1 D-cache
load and store accesses and a 32-entry queue for L2 cache
and memory load and store accesses—requests that missed
in the L1 D-cache. The L1 D-cache is organized as an eight-
bank cache having two 64-bit access ports.

Another interesting aspect of the AMD Athlon microar-
chitecture is the fact that the L2 unified cache is an exclusive
cache. This means that cache blocks that were previously
held by the L1 caches but had to be evicted from L1, are
held in L2. If the newer cache block that is to be stored in
L1 previously resided in L2, that cache block will be evicted
from L2 to make room for the L1 block, i.e., a swap oper-
ation is done between L1 and L2. If the newer cache block
that is to be stored in L1 did not previously reside in L2, a
cache block will need to be evicted from L2 to memory.

2.2 Performance counters

Modern processors are often equipped with a set of per-
formance counter registers. These registers are designed to
count microprocessor events that occur during the execution
of a program. They allow to keep track of the number of re-
tired instructions, elapsed clock cycles, cache misses, branch
mispredictions, etc. Generally, there are only a limited num-
ber of performance counter registers available on the chip.
On the AMD Athlon, there are four such registers. How-
ever, the total number of microprocessor events that can be
traced using these performance counters exceeds 60 in to-
tal. As a result, these registers need to be programmed to
measure a particular event. The events that are traced for
this study are given in Table 2. These events are commonly
used in architectural studies to analyze program execution
behavior. For most of the analyzes done in this paper, we
use derived performance metrics. These performance met-
rics are obtained by dividing the number of events by the
number of retired instructions. As such, we use events that
occurred per instruction. We deem this to be more mean-
ingful than the often-used miss rates. For example, we will
use the number of cache misses per instruction instead of the
number of cache misses per cache access. The reason is that
the number of cache misses per instruction relates more di-
rectly to performance than classical cache miss rate since it

mnemonic description
cycles elapsed clock cycles during execution

ret_instr retired instructions
L1-D-misses L1 D-cache misses
L2-D-misses L2 D-cache misses

L1 I-cache misses

L2 I-cache misses

L1 load misses

L1 store misses

L2 load misses
L2-S-misses L2 store misses
I-TLB-misses Instruction TLB misses
D-TLB-misses | Data TLB misses
br_mpred branches mispredicted
res_stall resource stalls

L1-I-misses
L2-I-misses
L1-L-misses
L1-S-misses
L2-L-misses

Table 2: Performance counter events traced on the
AMD Athlon XP.

also incorporates the number of cache accesses per instruc-
tion. Thus, the performance metrics derived from the events
shown in Table 2, include e.g. CPI (clock cycles per retired
instruction), L1 D-cache misses per retired instruction, etc.

Performance counters have several important benefits over
other characterization methods: less slowdown since mea-
surements happen at native execution speed, their ease of
use, and their high accuracy compared to simulation-based
and instrumentation-based approaches. However, there are
also a number of issues that need further attention. First,
measuring more than 4 events in our setup is impossible.
As such, multiple runs are required to measure more than
4 events. Second, non-determinism can lead to slightly dif-
ferent performance counter values when running the same
program multiple times. To address this issue, we measure
each performance counter four times and use the average
during analysis.

In this study, the performance counter values are accessed
through the VM, see the next section. In turn, the VM
makes use of the following tools: (i) the perfctr' Linux
kernel patch, which provides a kernel module to access the
processor hardware, and (ii) Performance API (PAPI) [7], a
high-level library presenting a uniform interface to the per-
formance counters on multiple platforms. The kernel patch
allows tracing a single process, maintaining the state of the
performance counters across kernel thread switches. The
PAPI library presents a uniform manner for accessing the
performance counters through the kernel module. Not all
PAPI defined events are available on every platform, and
not all native AMD events can be accessed through PAPI.
However, for our purposes, it provides a sufficient set of
events.

2.3 Jikes RVM

We use the Jikes Research Virtual Machine (RVM) [2, 3,
8] in this study. Jikes RVM is mainly targeted at server side
applications. It is written (almost) entirely in Java. The
Jikes RVM uses a compilation-only scheme for translating
Java bytecodes to native machine instructions. The Jikes
RVM comes with several compilation strategies: baseline,
optimizing and adaptive. This paper uses the most advanced

"http://user.it.uu.se/ mikpe/linux/perfctr/

Java application JikesRVM

dual buffer
per thread

B HPM W:
subsystem ’—‘

[\

trace writer
L)L) U PAPI thread Y

Yvvvy

VM threads [
Linux kernel
perfctr
AMD performance]
Athlon XP counter registers % storage

Figure 1: Overview of the Jikes RVM tracing system

compilation strategy, namely adaptive. In this scheme, Jikes
RVM compiles each method on its first invocation using
the baseline compiler and adaptively optimizes hot meth-
ods. Multiple recompilations are possible, each time using
more optimizations. The Jikes RVM also supports different
garbage collection mechanisms. The garbage collector in our
experiments implements a generational garbage collection
(GC) strategy with Mark-Sweep to clean the mature-object
space, i.e. the CopyMS scheme. To build the Jikes RVM, we
used (i) the Jikes? Java source-to-bytecode compiler (version
1.18) to compile the Jikes RVM source code class files, (ii)
the Blackdown VM to build the boot image with the Jikes
RVM optimizing compiler framework, and (iii) the GNU C
and C++ compilers to compile the few C/C++ source files.
The Jikes RVM itself is the CVS head (development) version
from January 2004.

The threading system multiplexes n Java threads (appli-
cation and VM) onto m native (kernel) threads that are
scheduled by the operating system. A command line option
specifies the number of kernel threads that are created by
the Jikes RVM. Usually, there is one kernel thread used for
each physical processor, also referred to as a virtual proces-
sor because multiple Java threads can be scheduled by the
VM within the single kernel thread. In our setup, we have
used a single virtual processor.

Current implementations of the Jikes RVM include sup-
port for hardware performance counters on both the TA-32
and PowerPC platforms. On the IA-32 platform, access to
the processor hardware is done through the PAPI library
(discussed above), see Figure 1. The Hardware Performance
Monitor (HPM) subsystem of the Jikes RVM defines a set
of methods to access the PAPI functions, such as starting,
stopping, and resuming the counting of events, as well as
reading the counter values. Keeping track of the events in
the Jikes RVM is done as follows. Essentially, each Java
thread keeps track of the performance counter events that
occur while it is the executing thread on the virtual proces-
sor. Each time the VM schedules a virtual context switch,
the removed thread reads the counter values, accumulates
them with its existing values, and resets the counters. As

2http://www-124.ibm. com/developerworks/opensource/
jikes/

such, a scheduled thread only observes counter values for
the events that occur while it is executing. This mecha-
nism for reading performance counter values is the standard
implementation within the Jikes RVM. For a more detailed
description on this, we refer to [28]. In section 3, we will
detail how we extended this approach for measuring perfor-
mance counter values on a per-method basis.

2.4 Java applications

We use the SPECjvm98 and SPECjbb2000 benchmark
suites in this study. SPECjvm98? is a client-side Java bench-
mark suite consisting of seven benchmarks. For each of
these, SPECjvm98 provides three inputs sets: sl, s10 and
s100. Contradictory to what their names suggest, the size
of the input set does not increase exponentially. For some
benchmarks, a larger input indeed increases the problem
size. For other benchmarks, a larger input executes a smaller
input multiple times. SPECjvm98 was designed to evaluate
combined hardware (CPU, caches, memory, etc.) and soft-
ware aspects (virtual machine, kernel activity, etc.) of a
Java environment. However, they do not include graphics,
networking or AWT (window management). In this study,
we used the s100 input set. The VM was set to use 64MiB*
heap for SPECjvm98 benchmarks.

SPECjbb2000 (Java Business Benchmark)® is a server-
side benchmark suite focusing on the middle-tier, the busi-
ness logic, of a three-tier system. We have used a modified
version of this benchmark, known as PseudoJBB, which exe-
cutes a fixed amount of transactions, instead of running for
a predetermined period of time. The benchmark was run
with 8 warehouses. The VM’s heap size was set to 384MiB.

3. METHOD-LEVEL PHASES

As stated in the introduction, Java applications are com-
plex workloads due to the close interaction between the Java
application and the VM on which it is running. To gain in-
sight in how Java workloads behave we identify three major
issues that need to be addressed. First, a distinction needs
to be made between the Java application and the VM, i.e.
the behavior of the application should be separated from the
behavior of the VM. Second, the VM itself is a complex piece
of software in which various components interact with each
other to implement a managed run-time system. Several
important VM components can be identified: class loader,
compiler, optimizer, thread scheduler, finalizer, garbage col-
lector, etc. As such, each of these components need to be
profiled to extract performance characteristics. Third, the
application itself may consist of several phases of execution.
Previous work has extensively shown that applications ex-
hibit phase behavior as a function of time, i.e. programs go
from one phase to another during execution. Recall that
we consider a phase to be a set of parts of a program exe-
cution that exhibit similar characteristics; and these parts
of similar behavior do not need to be temporally adjacent.
In this paper, we study method-level phase behavior, more
in particular we consider a method including all its callees.

3http://www.spec.org/jvmo8/

4The notations KiB, MiB, and GiB used in this pa-
per are Sl standard notations for binary multiples,
and denote 2'°, 229 and 23° respectively. See also
http://physics.nist.gov/cuu/Units/binary.html.
Shttp://www.spec.org/jbb2000/

This includes all the methods called by the selected method,
i.e. all the methods in the call graph of which the selected
method is the root. There are two motivations for doing
this. First of all, the granularity of a method including its
callees is not too small to introduce too much overhead dur-
ing profiling. Second, the granularity is fine-grained enough
to identify phases of execution. Previous work on phase clas-
sification [20] has considered various methods for identifying
phases, ranging from the instruction level, the basic block
level, the loop level up to the method level. From this re-
search, the authors conclude that phase classification using
method level information is fine-grained enough to identify
phases reliably. Especially when the application has small
methods. This is generally the case for applications written
in object-oriented languages, of which Java is an example.
The use of methods as a unit for phase classification was also
studied by Balasabrumonian et al. [6] and Huang et al. [17].

It is important to state that the purpose of this paper is
to identify method-level phase behavior using off-line tech-
niques. This is particularly useful for Java and VM develop-
ers during performance analysis of their software. Method-
level phase behavior allows them to improve their software
since the performance characteristics that are obtained from
the hardware performance monitors are linked directly to
the source code of the application and virtual machine. For
comparison, Sweeney et al. [28] read performance counter
values on virtual context switches, and output the method
ID of the method that is executing at that time to a trace
file. In our methodology, we specifically link performance
counter values to the methods. This is an important differ-
ence because the method executing at the virtual context
switch is not necessarily the method that was executed dur-
ing a major fraction of the time slice just before the virtual
context switch. A second motivation for studying off-line
phase behavior is that it can be used as a reference for dy-
namic (on-line) phase classification approaches. In other
words, the statically identified phases can be used for eval-
uation purposes of dynamic phase classification techniques.
Obviously, to identify recurring phases, static phase analysis
has the advantage over dynamic phase analysis as it can look
at the ‘future’ by looking ahead in the trace file. A dynamic
approach on the other hand has to anticipate phase behavior
and as such, can result in suboptimal phase identification.
In addition, the resources that are available during off-line
analysis are much larger than in case of on-line analysis, ir-
respective whether phase classification is done in software
or in hardware. Yet another motivation for studying off-
line method-level phase classification is for embedded and
specialized environments in which the a priori information
concerning the phase behavior in the Java application can
be useful.

The following issues are some of the more specific goals
we want to meet using our off-line phase analysis approach.

e We want to gather information from the start to the
end of the program’s execution. We want maximal
coverage with no gaps.

e The overhead when profiling methods should be small
enough not to interfere with normal program execu-
tion. This means that tracing all executed methods is
not a viable option. Also, we want the volume of the
trace data to be acceptable.

e We want to gather as much information as possible.
At a minimum, the collected information should be
sufficiently fine-grained such that transitions in Java
performance characteristics can readily be identified.
Such transitions can be caused by thread switches, e.g.
the garbage collector is activated, or because the appli-
cation enters a method that shows different behavior
from previously executed methods.

To meet the goals of this paper, we use the following off-
line phase analysis methodology. During a first run of the
Java application, we measure the number of elapsed clock
cycles in each method execution. This information is col-
lected in a trace file that is subsequently used to annotate
a dynamic call graph. A dynamic call graph is a tree that
shows the various method invocations during a program ex-
ecution when traversed in depth-first order [1]. In a second
step of our methodology, we use an off-line tool that an-
alyzes this annotated dynamic call graph and determines
the major phases of execution. The output of this second
step is a Java class file that describes which methods are
responsible for the major execution phases of the Java ap-
plication. In the third (and last) step, we link this class
file to the VM and execute the Java application once again.
The Java class file that is linked to the VM forces the VM
to measure performance characteristics using the hardware
performance monitors for the selected methods. The result
of this run is a set of detailed performance characteristics
for each method-level phase.

3.1 Mechanism

This section details on how a Java workload is profiled in
our methodology. We first discuss how the methods in the
Java application are instrumented. This mechanism will be
used during two steps of our methodology: when measuring
the execution time of each method execution during the first
run (step 1), and when measuring the performance charac-
teristics of the selected methods (step 3). The only differ-
ence between both cases is that in step 1 we instrument all
methods. In step 3, we only profile the selected methods. In
the second subsection, we detail on what information is col-
lected during profiling. Subsequently, we address profiling
the components of the VM.

3.1.1 Instrumenting the application methods

Methods compiled by the VM compilers consist of three
parts: (i) the prologue, (ii) the main body of the method,
and (iii) the epilogue. The prologue and epilogue handle the
calling conventions, pushing and popping the callee’s stack
frame, yielding at a thread switch, etc. The goal is to cap-
ture as many of the generated events during the execution
of a method. To achieve this, we add our instrumentation to
the method’s prologue and to the beginning of the method’s
epilogue. Methods are instrumented on-line by all the Jikes
RVM compilers, i.e. the baseline compiler as well as the op-
timizing compiler.

Extending the baseline compiler to instrument methods is
quite straightforward. It involves emitting the machine code
to call the instrumentation functionality in the Jikes RVM
run-time facilities. Calling the instrumentation functional-
ity is done using the Jikes RVM HPM API. Adding calls to
baseline compiled methods introduces new yield points. As
each yield point is a potential GC point (or safe point), it
is necessary to update the stack maps accordingly. If not,

n—1 n n+l stack depth

stop counting & read values

prologue pdate trace

-

resume counting

—
j method C |

body

Salle

—
j method C

stop counting & read values
update trace

resume counting

epilogue

i

Figure 2: Tracing the performance counter events
at the prologue and epilogue of a method.

execution time

referenced objects might not be reachable for the GC and
risk being erroneously collected.

For the optimizing compiler, things are slightly more com-
plicated. Optimizations are directed by the optimization
planner, and involve multiple layers, from a high level rep-
resentation to a machine code level representation. Our in-
strumentation involves adding an extra compiler phase to
the compiler plan in the High Intermediate Representation
(HIR) optimization set. Basically, we walk through the con-
trol flow graph of each method and add similar call instruc-
tions to the prologue and epilogue as we did for baseline
compiled methods.

Next to the baseline and optimizing compiler, Jikes RVM
also employs an on-stack replacement (OSR) scheme [16].
OSR allows the machine code of methods that are execut-
ing to be replaced by an optimized version of that machine
code. This is especially useful for long-running methods, as
the VM does not need to wait until the method finishes ex-
ecuting to replace the code that is currently executing with
the newer optimized code. For this, certain OSR safe-points
are available in the compiled code. At these points, the OSR
mechanism can interrupt the thread executing the code and
replace it with the optimized version. Our implementation
also supports OSR.

Regardless of the compiler that was used to generate the
executable machine code, we call our tracing framework as
soon as the new frame for the callee has been established, see
Figure 2. At this point, the thread executing the method up-
dates its counter values, and suspends counting through the
Jikes RVM HPM interface. As such, no events are counted
during the logging of the counter values. When the trace

values have been stored into a trace buffer, counting is re-
sumed. To enhance throughput, the trace data is stored in
a buffer. We maintain a per-thread cyclic list, which con-
tains two 128KiB buffers. To ensure that these buffers are
never touched by the garbage collector, they are allocated
outside of the Java heap. Each time one of the buffers for a
thread is full, it is scheduled to be written to disk, and the
other buffer is used to store the trace data of that thread.
A separate thread® stores the full buffer contents to disk in
a properly synchronized manner. The same action sequence
occurs at the method epilogue, just before the return value
is loaded into the return register(s) and the stack frame is
popped. When a method frame is popped because of an
uncaught exception, we also log the counter values at that
point. In summary, this approach reads the performance
monitor values when entering the method and when exiting
the method. The difference between both values gives us the
performance metric of the method including its callees. For
computing the performance metrics of the method itself, i.e.
excluding its callees, the performance metrics of the callees
need to be subtracted from the caller method.

From Figure 2, it can be observed that the events occur-
ring before reading the counter values in the prologue and
the events in the epilogue of a method are attributed to the
calling method. However, this inaccuracy is negligible for
our purposes.

In our methodology, we need to pay special attention to
exceptions which can be thrown either implicitly or explic-
itly. The former are thrown by the VM itself whereas the
latter are thrown by the program. In both cases, whenever
an exception is thrown, control must be transferred from the
code that caused the exception to the nearest dynamically-
enclosing exception handler. To do so, Jikes RVM uses stack
unwinding: stack frames are popped one at a time until
an exception handler is reached. When a frame is popped
by the exception handling mechanism, the normal (instru-
mented) epilogue is not executed, i.e. a mismatch in prologue
versus epilogue. To solve this problem, we instrumented the
exception handling mechanism as well to assure that the
trace always contains records for methods that terminate
because of an uncaught exception.

3.1.2 Logging the trace data

An instrumented run of our application results in multiple
traces, one with the IDs for the compiled methods (baseline,
optimized and OSR-compiled), and the others with the rel-
evant counter information per thread. Each record in the
latter requires 35 bytes at most, and provides the following
information:

e A 1-byte tag, indicating the record type (high nibble)
and the number of counter fields (1 up to 4) used in the
record (low nibble). The record type denotes whether
the record concerns data for a method entry, a method
exit, a method exit through an exception, an entry into
the compiler, a virtual thread switch, etc.

e Four bytes holding the method ID. This should prove
more than sufficient for even very large applications.

5This is an OS-level POSIX thread, not a VM thread. This
ensures that storing the trace data does not block the Vir-
tual Processor POSIX thread on which the Jikes RVM exe-
cutes.

e Eight bytes per counter field in the record. We can
measure up to four hardware performance monitor val-
ues at a time.

It is possible to use a scheme in which the traces for each
thread are written to a single file. In this case, we add extra
synchronization to ensure the order of the entries in the trace
is the same as the execution order. The disadvantage here
is that there occurs a sequentialization during the profiling
run, which can be bothersome when using multiple virtual
processors on a multi-processor system. Also, in this case,
each record will contain two extra bytes for the thread ID.

The total trace file size is thus a function of the number of
method invocations, the number of virtual context switches
and the number of traced events. Again, for clarification,
the same structure is used for both the first step of our
methodology (measuring execution times for each method)
and the third step (measuring performance characteristics
for the selected phases). However, for the first step we apply
a heuristic so that we do not need to instrument all methods;
this reduces the run-time overhead and prevents selecting
wrapper methods as the starting point of a phase. A method
is instrumented if the bytecode size of its body is larger than
a given threshold (50 bytes), or if the method contains a
backward branch, i.e. can contain a loop.

3.1.3 Instrumenting VM routines

As mentioned earlier, a VM consists of various compo-
nents, such as class loader, compiler, optimizer, garbage
collector, finalizer, thread scheduler, etc. To gain insight
in Java workload behavior, it is thus of primary importance
to profile these components. For most of these, this is eas-
ily done using the available Jikes RVM HPM infrastructure
since they are run in separate VM threads. This is the
case for the finalizer, the garbage collector and the optimizer
(which uses six separate threads). To be able to capture the
behavior of the compiler, we had to undertake special ac-
tion since calling the compiler and optimizer is done in the
Java application threads. In case of the baseline compiler,
the compilation is done in the Java application thread itself.
In case of the optimizing compiler, the method is queued
to be optimized by the optimizer threads. These two cases
were handled in our modified Jikes RVM implementation by
manually instrumenting the runtimeCompiler and compile
methods from VM_Runtime.

3.2 Phase identification

This section discusses how we identify phases using our
off-line phase identification tool. Our tool takes a trace
file with timing information about method calls and thread
switches (see section 3.1.2) as input, analyzes it, and outputs
a list of unique method names that represent the phases of
the application.

To select method-level phases, we use the algorithm pro-
posed by Huang et al. [17] which requires two parameters,
called Oweight and Ograin . The algorithm selects methods or
phases as follows. Suppose the execution time of a pro-
gram takes cr clock cycles. Consider a method m for which
the total execution time in this method including its callees
equals ¢, = protal - ¢ clock cycles, with piotas < 1. This
is the total execution time consumed by this method over
all its invocations. The average execution time consumed
by this method (including its callees) equals paverage * Cm.-
Method m will then be selected as a phase if the following

init (readData] [sortData] (printData]

— P

{readElement] [print} [compare] [swap] [printElement

method information

name total time | time/call | calls
main 1800 1800 1
init 30 30 1
readData 300 200 1
readElement 200 4 50
print 30 30 1
sortData 1300 1300 1
compare 600 2| 300
swap 500 2| 250
printData 170 170 1
printElement 150 3 50

Figure 3: Phase identification example.

conditions are met

Ptotal > eweight

Paverage > egrain .

The basic idea of this definition is to select methods in which
the program spends a substantial portion of its total execu-
tion time (this is done through Oweignt), and in which the
program spends a sufficiently long period of time on each
invocation (this eliminates short methods and is realized
through Ograin). As a result, the maximum number of se-
lected methods equals 1/6yeight and the maximum number
of method invocations profiled during our third step (mea-
suring performance metrics using the hardware performance
monitors) equals 1/(Oweight - Ograin)-

To illustrate the phase identification algorithm, consider
the call graph in Figure 3. It depicts a call tree that is the
result of analyzing the trace file of a fictive sort program.
The sort program reads the data to be sorted, prints an in-
termediate status message to the screen, sorts the data, and
finally prints the sorted data before terminating. For sim-
plicity, abstract time units are used. The table in Figure 3
also shows the total time spent in each method, as well as
the time spent per invocation.

To identify program phases, our tool first computes the
total and average execution times spent in each method.
For all methods, these times include the time spent in their
callees. In order for a method to be selected as a program
phase, its total execution time needs to be at least a frac-
tion Oweignt of the program’s total execution time, and the
average execution time should take at least a fraction fgrain
of the program’s total execution time on average. In our
running example, Oweight = 10% and Ograin = 5%, would se-
lect methods whose total execution time is more than 180
and whose average execution time is more than 90 — main,
readData and sortData, respectively.

benchmark configuration overhead number of phases trace file size

Osweight Ograin estimated | measured | static (total) | dynamic (total) (4 counters)
compress | 8x 10 °% | 6 x 10 °% | 1.84% 1.82% 49 (54) 2,664 (19,726,311) 211KiB
jess 1.0 % 1.0% 1.22% 1.27% 10 (211) 23 (22,693,249) 68KiB
db 8x107%% | 6 x 107°% | 7.17% 5.61% 52 (57) 32,223 (1,484,605) 2590KiB
javac 2x107%% | 6 x 1073% | 2.61% 2.11% 29 (503) 9,864 (23,388,699) 871KiB
mpegaudio | 2 x 1072% | 2 x 107*% | 10.75% 3.52% 23 (191) 40,064 (29,338,068) 753KiB
mtrt 1072% 107%% 24.68% 7.83% 30 (94) 88,719 (14,859,306) 2,680KiB
jack 1.0% 1072% 3.98% 4.28% 18 (182) 2,528 (4,292,580) 244KiB
PseudoJBB | 2x 107'% | 2 x 107*% | 3.69% 6.65% 52 (381) 29,599 (16,224,804) 2,766KiB

Table 3: Summary of the selected method-level phases for the chosen Oyeight and Ograin values: overhead (esti-
mated versus real), the number of static and dynamic phases, and the size of the trace file.

4. STATISTICAL TECHNIQUES

To quantify the variability within phases, we use the Co-
efficient of Variation (CoV). We first measure the CoV for a
given performance metric within a phase. This is defined as
the standard deviation divided by the mean average value
for that metric within the given phase. The overall CoV
is then obtained by averaging over the various phases af-
ter weighting with the execution time spent in each of the
phases. The smaller the CoV the less variability is observed
within a phase.

For quantifying the variability within phases versus the
variability between phases, we employ the ANOVA tech-
nique [18]. ANOVA allows us to verify whether the mean
values for a given set of characteristics are significantly dif-
ferent for each phase by looking at the variability in the
observations. In other words, our goal is to verify whether
the variability is larger between the phases than within each
phase. If this is the case, our methodology succeeds in iden-
tifying recurring phases in which the behavior is stable and
similar. An ANOVA analysis is done as follows. First, the
total variability in the observations X;; (phase i = 1...k
and measurement j = 1...n; for phase ¢) can be expressed
in terms of the deviations from the overall mean X, i.e.
X;; — X. Second, each measurement for a given phase i can
be expressed in terms of the deviation from the mean for the
phase X, i.e. X;; — X;. Finally, the mean for each phase 4
can be expressed in terms of the deviation from the overall
mean, i.e. X; — X. This can be expressed by the following
formula

which is equivalent to
ZZ (Xij — X)Z = Znn’f + ZZE?J
i i i

Clearly, if the mean values for the various phases are signif-
icantly different, the 7, will be significantly larger than the
€i,;. 1f this is the case, the F-statistic

> i /(k—1)
2 Z]’ E?,j (>2ini —k)

that is used to compare both values with respect to all
phases will yield a large value. The corresponding p-value
will be smaller than 0.05 for a 95% level of significance or
smaller than 0.01 for a 99% level of significance. Applying

the ANOVA analysis in this paper is done using R [23], an
S dialect.

5. RESULTS
5.1 Identifying method-level phases

Tracing all methods at their entry and exit points is very
intrusive. Thus, it is important to determine a set of method-
level phases such that the incurred overhead is relatively low,
but such that we still get a detailed picture on what hap-
pens at the level of the methods being executed. This is
done by choosing appropriate values for Oweight and Ograin -
These values depend on three parameters: (i) the maximum
acceptable overhead, (ii) the required level of information,
and (iii) the application itself. The off-line analysis tool aids
in selecting values for Oyeight and Ograin by providing an es-
timate for both the overhead and the information yielded
by each possible configuration. The left column of Figure 4
presents the number of selected method-level phases as a
function of Oweight and Ograin . The right column of Figure 4
shows the corresponding estimated overhead which is de-
fined as the number of profiled method invocations (corre-
sponding to method-level phases) divided by the total num-
ber of method invocations. Note that this is not the same as
coverage, since selected methods also include their callees.
The coverage is always 100% in our methodology. Figure 4
only presents data for three (jess, jack, and PseudoJBB) out
of the eight benchmarks we analyzed because the remaining
five benchmarks showed similar results. Clearly, the larger
Oweight , the fewer methods will be selected. The higher the
value of Ograin, the less short-running methods will be se-
lected.

Using the plots in Figure 4 we can now choose appropri-
ate values for Oyeight and Ograin for each benchmark. This is
done by inspecting the curves with the estimated overhead.
We choose Oyeight and Ograin in such a way that the estimated
overhead is smaller than 1%, i.e. we want less than 1% of
all method invocations to be instrumented. The results for
each benchmark are shown in Table 3. Note that the user
has some flexibility for determining appropriate values for
Oweight and Ograin ; this allows the user to determine the num-
ber of selected method-level phases according to his interest.

So far, we have used an estimated overhead which is de-
fined as the number of profiled method invocations versus
the total number of method invocations of the complete pro-
gram execution. To validate these estimated overheads, i.e.
to compare with the actual overheads, we proceed as fol-

instrumented methods using jess

1000 T

100

number of methods

theta grain 0.0000001%
theta grain 0.000001%
theta grain 0.00001% --

theta grain 0.0001%
theta grain 0.001%
theta grain 0.01%
theta grain 0.1% -
theta grain 1% -
theta grain 10% -

I
1e-04 0.001 0.01 0.1
theta weight

(a)
instrumented methods using jack
100 T T

1
1e-05

number of methods
5
T

T
theta grain 0.001% ——
theta grain 0.002%
theta grain 0.004%
theta grain 0.008%
theta grain 0.01%
theta grain 0.1%
theta grain 1% -~

1
0.001 0.01 0.1 1
theta weight

()

ir methods using

100 T T T

number of methods
5
T

T
theta grain 0.0001%
theta grain 0.0002%
theta grain 0.0004% --
theta grain 0.001%
theta grain 0.01%
theta grain 0.1%
theta grain 1% -~

theta weight

()

1
1e-04 0.001 0.01 0.1 1

overhead in percentage of original execution time overhead in percentage of original execution time

overhead in percentage of original execution time

estimated overhead using jess

1e+06

! ! ! 00001%
00001%
0001%

theta ‘gra\
theta grai

100000

10000

1000

100

theta grain 0.
theta grain 0.01%

theta grain 0.1% ---
theta grain 1% ----
theta grain 10% -

I I
1e-04 0.001 0.01 0.1 1 10
theta weight

(b)

estimated overhead using jack

100

1000

' ' theta grain 0.001%
theta grain 0.002% -~

theta grain 0.008%

=)
=3
T

o
T

e
T

0.0

A theta grain 0.01% -
theta grain 0.1% ---

theta grain 0.004% ----

theta grain 1% -~

1
0.001

0.01 0.1 1 10
theta weight

(d)

estimated overhead using pseudojbb

100

100

' ' " theta grain 0.0001%
theta grain 0.0002%

o
T

o
o
T

0.001

1e-04

.
0.001 0.01 0.1 1
theta weight

(f)

100

Figure 4: Estimating the overhead as a function of Oy.cight and Ograin for jess (a,b), jack (c,d), and PseudoJBB (e,f).
The figures on the left present the number of selected method-level phases; the figures on the right present

the estimated overhead.

0.40

0.35

0.30

0.25 I

0.15

CoV of the CPI

0.10+

0.05

0.20 -

0.00

Compress
JessA

DbA

JavacA
MpegaudioA
MtrtA

JackA
PseudoJBBA

0.45
0.40 I
0.35

0.30

0.25 —
0.20 —
0.15+ —

0.10+ —
0.05+ —
0.00 i i ; ; . . .

CoV of the L1 D-cache misses

Compress
Jess

Db

Javac
Mpegaudio
Mtrt

Jack
Pseudo)BB

0.33 —
0.30 —
0.28 —
0.25
0.23 — — T
0.20
0.18
0.157
0.137
0.10+
0.08+
0.05+
0.03+
0.00

CoV of the branch misprediction

Jess

Db
Mtrt
Jack

Compress
Javac
Mpegaudio
HEEEE
PseudoJBB

0.65
0.60
0.55
0.50
0.45 *
0.40 —
0.35+ —
0.30+ —
0.25+ —
0.20+ —
0.15+ —
0.10+ —
0.05+ —

0.00 i i ; ; . . .

CoV of the L1 I-cache misses

Compress
Jess

Db

Javac
Mpegaudio
Mtrt

Jack
Pseudo)BB

Figure 5: Accumulated weighted CoV values for the various benchmarks for four characteristics: (a) CPI,
(b) branch mispredictions (¢) L1 D-cache misses, and (d) L1 I-cache misses.

lows. We measure the total execution time of each bench-
mark (without any profiling enabled) and compare this with
the total execution time when profiling is enabled for the
selected methods. The actual overhead is defined as the in-
crease in execution time due to adding profiling. Measuring
the wall clock execution time is done using the GNU/Linux
time command. Table 3 compares the estimated overhead
and the actual overhead. We observe from these results that
the actual overhead is usually quite small and mostly tracks
the estimated overhead very well. This is important since
determining the estimated overhead is more convenient than
measuring the actual overhead. In two cases the estimate
is significantly larger than the measured overhead, i.e. for
mpegaudio and for mtrt.

For completeness, Table 3 also presents the number of
static method-level phases as well as the number of phase
invocations or dynamic phases. For reference, the total
number of static methods as well as the total number of
dynamic method invocations are shown. The rightmost col-
umn in Table 3 presents the file size of the trace file ob-
tained from running the Java application while profiling the
selected method-level phases. Recall that besides applica-
tion method records, the trace also contains data regarding
thread switches, GC, and compiler activity.

5.2 Variability within and between phases

The purpose of this section is to evaluate the variability
within and between the phases. Our first metric is the Co-
efficient of Variation (CoV) which quantifies the variability
within a phase, see section 4. Figure 5 shows the CoV for
the various benchmarks over various characteristics (CPI,
L1 D-cache misses, L1 I-cache misses, and branch mispre-
dictions). We observe that for the CPI and the branch mis-
predictions, the CoV is quite small. This indicates that the
behavior within a phase is quite stable for these character-
istics. The I-cache behavior on the other hand, is not very
stable within the phases for mpegaudio. This can be due
to the low I-cache miss rate for the mpegaudio for which a
similarly small variation exists. Indeed, a small variation in
absolute terms, e.g. 0.0001 versus 0.0002, can result in large
variations in relative terms (100% in this example). As such,
we do not consider this as a major problem since analysts
do not care about code having very low cache miss rates.
Furthermore, if unstable behavior for a given characteris-
tic is undesirable, Oyeight and Ograin can be adjusted so that
more phases are selected and less variability will be observed
within the phases.

To get a better view on the performance characteristics
within and between phases, we use boxplots. Figure 6 shows

° ot[H
i
T
i
af
o comocmmms |4
af
H
o |
o occmms - {[} - ®
o o cmmew -{[]-o®
° 0
H
i
T
|
I
0
L
|
““““““““ I R CEEEEE Ry
[]
T T T T T T
© 0 I o = I
= = = < = <
= S S S = S
SOSS|W 8yoeo—|
af
|
Gl
|
Hleo
0w anmmmmm— - - - - - []----- om
Hvo
i
|
commomme - |] - @
oo - - [|- -4
ol
i
|
Gl
|
H1+
|
el
|
00 0oowom comm---{ [}-4
F--[11-+
T T T T T T
0 + o o - o
=1 2 S S S S
S S = S S S

SessIW 8yord—Q

ole]SApesISIosiapIOwL) 8snoyasep qql-oads
9|qe] 300iSpeo|-asnoyarepy qql-oads

a|qe | AiojsiHpeo|'asnoyalep ‘qql-oeds
asnoyasepliuIasnoyaep qql-oads
o61aBeuepyUOnORSURI] "qq-0ads
$59001d"UONOBSURI] [9A8TX001S qql-0ads
unrurewggpraql-oads
sasnoyasepWNNaseasoul urewggrqql-oads
unyyoq urewggr-qql-oads
ananb-uopoesuel | A1aAlleq-qql-oads
ssaooud-uonoesues] A1anjpg-qql-oads
alelgApesigio4siepiowil Auedwo) qql-oads
eregAwwngynmewud Auedwod qql-oads
a|qe | asnoyaseppeo| Auedwo) qql-oads

a|qe AioysiHesnoyaepmpeol Auedwo) qql-oeds
9|qe | waljpeo| Auedwo) qql-oads
siopiQeiu|peo| Auedwo) qql-oads

9|qe | sawolsnopeo| Auedwo) qql-oads

s[ejo |)nseyAe|dsip-Auedwo) qql-oads
KonsepAuedwoD qqgl-oads

awmnuni

abeqied

a1BISAPERISI0-SIapIOWIY 8SNoyaIB M 'qq[-0ads
9|qe 1 }00lSPEO| @snoyaep qql-oads

a|qe | A10lsiHpeo| asnoyatep qal-oads
asnoyasepiiuIasnoyalep 'qal-oads
ob-iabeuepyuonoesuel] qql-oads
$59004d"UOIOBSUEI | [9AS 001G qq-0ads
unrurewggprqql-oads
sasnoyalepwnNeseasour urewggrqql-oeds
unyyoq urewggprqql-oads
ananb-uonoesuel | A1aaleg-qql-oads

ssa004d uonoesuel | A1aaleg-qql-oads
alelgApealgio4siopiownl Auedwo) qql-oads
elegAwwngynmawud-Auedwon qql-oads
o|qe | asnoyaseppeo| Auedwo) qql-oads

a|qe] AiolsiHasnoyareppeol Auedwo) qql-oads
o|qe | way|peo|Auedwo) qql-oads
siapiQeniujpeol Auedwo) qql-oads

a|qe iswoisngpeoy Auedwo) qql-oads

s[ejo |)nseyAeldsip Auedwo) qql-oads
Konsap Auedwon qql-oads

awpun)

abeqieb

Y i SRS y
) | oo
k- -4
oo | oo
oa [}
o 000 cocEmmeE—G—- -]]- - -
oa [}
o | oo
H-4
co— - - - []- - - —
Comme— - - - - [|---- oo
b o
o | oo
oo | 0o
k- -4
o
LT
of o
HI -4
|
00 OO @Ok -~ - === -------- 1T 1------------- 4
bo--- 4
T T T T
Odl
o o a-[Th
o
I
o
F-CIH
o am -[[]- e
F-CH
(]
L)
oo - {[} - @
oo -] - @o
° D
(]
o
T
11|

0.04
.03

0.02

0.01

S
uololpaldsiw youeig

21eISAPESISI04SIpIOWLY 3SNoya e M qaf-0ads
9|qe] }00)SpEO|"asnoyarepy qql-oads

a|qe L AI01sIHpeO| @snoyalep qql-oeds
asnoyasepluIasnoyasep)qql-oads

o6 1e6eurpUONOBSURI] "qq-0ads
$50004d"UONOBSURI | [9A 001G qq[-0ads
unrurewggrqql-oads
S9SNOYIBMWNNSSEAIOU
unyyoq urewggr-qql-oads

1el) Aanleg-qql-oad:
ssao0ud-uonoesuel | A1aaiag-qql-oads
a1eISApealSiogsiapiowLy Auedwo) qql-oads
elegAwwngyimewnd Auedwod qql-oads

a|qe | asnoyasep\peo| Auedwo) qql-oads

a|qe L A101sIHesnoyaseppeo| Auedwo) qql-oads
9|qe | waljpeo| Auedwo qql-oads

siapiQeniu|peo| Auedwo qql-oads

9|qe iawolsnopeo| Auedwo qql-oads

s[ejo | }nseyAe|dsip-Auedwo) qql-oads

Konsep Auedwon qqgl-oads

Lm_,QEOO awnuni

1009|100 abeqeb

ewggrqqfoads

anenb

e1eISApeSlSI04SIapIOWLY 8SNoyaIe A ‘qqf-oads
9|qe1300)SpEO|9snoyasepm qal-oads

a|qe A1olsiHpeo| asnoyatep qql-oads
asnoyasepiiulasnoyasep qal-oads
ob-196euRpUONOBSURI] "qql-0ads
$59004d"UOIOBSURI | [9ASTY001S qql-0ads
unrurewggrqql-oads
sasnoyalepmwnNesealour urewggrqql-oeds
unygyoq urewggprqql-oads
ananbruonoesuel] A1aapg-qql-oads

ssa00.d uonoesuel | A1aAieg-qql-oads
aJe1gApealgIogsiapiQwily Auedwo) qql-oads
elegAwwngyumeawud Auedwon-qql-oads
a|qe | asnoyaseppeo| Auedwo) qql-oads

a|qe A1olsiHasnoyareppeol Auedwo) qql-oads
a|qe L way|peo| Auedwo) qql-oads

slapiQ[eniujpeol Auedwo qql-oads

s|qe Liswoysnypeol Auedwo) qql-oads

s[ejo])nseyAe|dsip-Auedwo) qql-oads
Konsap Auedwon qql-oads

awpuny

abeqieb

haracteristics: (a)

ing c

for the phases of PseudoJBB on the follow

ion
L1 D-cache misses, (b) L1 I-cache misses, (c) branch mispredictions, and (d) IPC.

the distribut

ing

Boxplots show

Figure 6

100.00% 100.00%
90.00% 90.00% ~
80.00% - 80.00%
70.00% — 70.00% ~
60.00% - — 60.00% -
50.00% — [Eother 50.00%
40.00% 4 [.Fina.liz.er 40.00% ~
30.00% 1 e E(B)::en\'\‘:]z:éompiler 30.00% 7
20.00% [y [l Garbage Collection 20.00% ~
10.00% || [|DApplication 10.00%
0.00% ; 0.00% - T
TSOL8 8 88 8835888 % [T T I
, E EEEEEEE g EET g o EEEEEEEE GBS e
50 3 2 40 3 2 b S oaa = &0 L 5 92 3 29 3 9
4 d 4 29 & 3 99 R 4 24 2 2o 2 499 ERE
[a] - A -
(a) (b)
Figure 7: Performance characteristics for the application versus the VM components for PseudoJBB (a) and
jack (b).
benchmark configuration ANOVA results
Oprain Oweight F-value | degrees of freedom | p-value
compress 8x10°°% | 6 x 107 % | 37.94 (48, 2640) <107 '®
jess 1.0 % 1.0% 1.74 (10, 664) 0.067
db 8x107°%% | 6 x 1075% | 43.03 (49, 32339) <107'¢
javac 2x1072% | 6 x 1073% | 117.34 | (20, 10749) <1071¢
mpegaudio | 2 x 1072% | 2 x 1073% | 495.95 | (26, 102894) <1071¢
mtrt 107%2% 1073% 39.23 (26, 89004) <107'¢
jack 1.0% 1072% 63.56 (14, 2934) <107'°
PseudoJBB | 2 x 107% | 2 x 1074% | 288.24 | (19, 32206) <1071

Table 4: Results for ANOVA comparing the means for the observed characteristics.

the performance characteristics for the various phases for
PseudoJBB. On the X axis of this graph, we display all the
phases. The Y axes represent the various metrics that were
measured: IPC, L1 I-cache miss rate, L1 D-cache miss rate
and the branch misprediction rate. For each phase, we dis-
play the mean value as the middle of the rectangular box.
The borders of each box represent the standard deviation
and the individual points above and under these boxes rep-
resent outliers, i.e. not within one standard deviation from
the mean. This figure clearly shows that the performance
characteristics can be quite different between phases. The
variability within each phase on the other hand, is usually
small. Notable exceptions to this are the GC and VM com-
piler.

We now quantify the variability between the phases ver-
sus the variability within the phases in a more rigorous way.
This is done using an ANOVA test, see section 4. In Ta-
ble 4, we show the mazximum p-value per benchmark over
all characteristics. Recall that the lower p, the better. In
our results, p is smaller than 107'¢ for nearly all bench-
marks, from which we conclude that the mean values for
each characteristic for the various phases are different at a
significance level that almost reaches certainty. This means
that the variability between the phases is significantly larger
than the variability within the phases which proves that our
off-line technique reliably identifies phases with dissimilar
inter-phase behavior and similar intra-phase behavior. For
jess however, the p value reported in Table 4 is larger than

for the other benchmarks. The higher p-values are due to
the I-TLB and D-TLB miss rates, which do not show that
much variability between the phases.

5.3 Analysis of method-level phase behavior

A programmer analyzing application behavior will typi-
cally start from a high-level view of the program. Two of
the first things one wants to analyze are where the time is
spent, and whether potential bottlenecks are due to the ap-
plication or the VM. In the first subsection, we look at the
high-level behavior of Java applications and compare it with
the behavior of the VM (GC, compiler, etc.). Once the high-
level behavior has been understood, the next logical step is
to investigate parts of the application into more detail. The
subsequent subsection shows how the programmer can use
the information collected by our framework to gain insight
about the low-level behavior of his program, and how our
data can help identify and explain performance bottlenecks.

5.3.1 VM versus application behavior

Figure 7(a) shows the number of events occurring in the
application versus the VM. This is done here for PseudoJBB.
We observe that most of the events occur in the application
and not in the VM. Indeed, the total program execution
spends 73% of its total execution time in the application;
the remaining 27% is spent in the VM. The time spent in
the VM is partitioned in the time spent in the various VM
components: compiler, optimizer, garbage collector, final-
izer and others. We observe that the most dominant part

benchmark | application | garbage collector finalizer compiler other
baseline | optimizing
compress 89.136% 9.377% 0.006% | 0.205% 0.696% | 0.580%
jess 56.835% 39.641% 0.003% | 0.919% 1.914% | 0.688%
db 92.211% 6.991% 0.002% | 0.128% 0.455% | 0.213%
javac 65.463% 28.987% 0.008% | 0.940% 3.618% | 0.984%
mpegaudio 85.000% 7.999% 0.002% | 0.559% 5.821% | 0.620%
mtrt 65.802% 28.039% 0.005% | 0.485% 4.687% | 0.982%
jack 53.905% 41.556% 0.015% | 0.941% 2.317% | 1.265%
PseudoJBB 73.348% 22.974% | < 0.001% | 0.091% 3.532% | 0.063%

Table 5: The time spent in the application and the different VM components.

of the VM routines is due to the optimizer (3.5%) and the
garbage collector (23%). This graph reveals several inter-
esting observations. For example, although the optimizer
is responsible for only 3.5% of the total execution time, it
is responsible for a significantly larger proportion of the L1
D-cache load misses (6.3%) and L2 I-cache misses (13.7%).
The garbage collector on the other hand, accounts for signif-
icantly more L2 D-cache misses (28%) than it accounts for
execution time (21%). Another interesting result is that the
garbage collector accounts for a negligible fraction of the L1
and L2 I-cache and I-TLB misses. This is due to the fact
that the garbage collector has a small instruction footprint
while accessing a large data set.

Figure 7(b) presents a similar graph for jack. The per-
centage of the total execution time spent in the application
is 54%. Of the 46% spent in the VM, 41.5% is spent in
the garbage collector, 2.3% in the optimizer, 0.9% in the
baseline compiler and 1.3% in other VM routines, such as
the thread scheduler, class loader, etc. These results con-
firm the specific behavior of the garbage collector previously
observed for PseudoJBB: low L1 and L2 I-cache and I-TLB
miss rates and high L2 D-cache and D-TLB miss rates (due
to writes). The baseline compiler and the optimizer show
high L2 I-cache miss rates.

Table 5 presents the time spent in the application versus
the time spent in the VM components for the SPECjvm98
and PseudoJBB benchmarks. The time spent in the applica-
tion varies between 54% and 92% of the total execution time;
the time spent in the garbage collector varies between 7%
and 42% and the time spent in the optimizer varies between
0.4% and 5.8%. The execution time in the other VM compo-
nents is negligible. We conclude that Java workloads spend
a significant fraction of their total execution time in the
VM, up to 46% for the long-running applications included
in our study. For short-running applications, for example
SPECjvm98 with the sl input set, this fraction will be even
larger. It is interesting to note that the three benchmarks
(compress, db, and mpegaudio) for which the total execution
time spent in the application is significantly larger than the
average case (89%, 92% and 85%, respectively), were de-
noted as ‘simple’ benchmarks by Shuf et al. [27].

5.3.2 Application bottleneck analysis

Profilers provide a means for programmers to perceive the
way their programs are performing. Our technique provides
an easy way to the programmer to gain insight about the
performance of their application at the micro-architectural
level. That is, hardware performance counters can be linked
to the methods in the source code. Conventional methods

on the other hand, are much more labor-intensive and error-
prone for the following reasons: (i) the huge amount of data
gathered from a profiling run, and (ii) the presentation of
this huge amount of data usually prevents quick insight.

This section shows how our technique can help answer
three fundamental questions programmers might ask when
optimizing their application: (i) what is the application’s
bottleneck, (ii) why does the bottleneck occur, and (iii) when
does the bottleneck occur?

To answer the first question (what is the bottleneck?), we
compile a list of phases with the highest CPI values. The
methods with the highest CPI are most likely to represent
a bottleneck. To answer the second question (why does the
bottleneck occur?) we investigate the corresponding HPM
counters of the bottleneck phase(s). To answer the last ques-
tion (when does my bottleneck occur?) we can plot the CPI
over time.

Table 6 presents the major bottleneck phases for both the
SPECjvm98 benchmarks and for PseudoJBB. Due to space
constraints Table 6 depicts a subset of all phases only: we
show the phases of which the total execution time takes
more than 1% or 2% of the program execution time and of
which the CPI is above the average CPI, or which other-
wise display bad behavior for a shown characteristic. This
table shows the percentage of the total execution time that
is spent in each phase, the average CPI in each phase, the
cache miss rates and the branch misprediction rate. This
information can be helpful in identifying why these phases
suffer from such a high CPI. For example, high D-cache miss
rates suggest that the programmer should try to improve the
data memory behavior for the given phases. We can make
the following interesting observations—these are just a few
examples to clarify the usefulness of linking microprocessor
level information to source-code level methods.

e The Compressor. compress method in compress suffers
from high D-cache miss rates. Optimization of the
data memory behavior can be achieved by applying
prefetching.

e From all the benchmarks, mtrt has a method with
the most mispredicted branches: Scene.RenderScene.
This method contains two nested loops, iterating over
all pixels in the scene to be rendered. Inside the loop
there are a number of conditional branches and a call
to e.g. Scene.Shade. In turn, the latter shows bad
branch behavior due to numerous (nested) tests that
are conducted to decide on the color of the pixel that
is being rendered. This behavior can be optimized by

phase time CPI | L1-D L1-1 L2-D L2-1 | br_mpred
l l l l l l l

compress
garbage collector 9.3773% | 1.7778 4.04 0.02 2.59 0.01 4.39
Compressor.compress 58.3916% | 1.7447 | 22.91 0.01 4.36 | < 0.01 7.28
Decompressor.decompress 25.2042% | 0.9242 253 | <0.01 0.12 | <0.01 4.83
benchmark average n/a | 1.4830 | 12.25 0.10 2.01 0.04 5.69
jess

Jesp.parse 1.1021% | 1.8701 4.52 5.91 1.04 1.71 14.55
garbage collector 39.6413% | 1.7647 4.02 0.02 2.58 0.01 4.33
Rete.Run 53.8732% | 1.1796 4.92 0.51 0.45 0.05 4.51
benchmark average n/a | 1.3959 4.66 0.68 1.12 0.17 4.73
db

Database.shell_sort 85.5593% | 5.1134 | 26.42 0.02 18.01 0.01 4.87
Database.remove 4.5821% | 2.7155 | 11.33 0.10 6.28 0.06 1.36
garbage collector 6.9912% | 1.7989 3.92 0.03 2.45 0.01 4.23
Database.set_index 2.3873% | 1.5749 5.74 0.08 3.38 0.04 0.08
benchmark average n/a | 3.9847 4.71 0.05 3.13 0.01 1.07
javac

SourceClass.check 7.0644% | 2.2501 8.06 13.13 1.74 1.75 23.2
SwitchStatement.check 1.4973% | 1.9129 7.91 13.21 0.76 0.49 22.87
garbage collector 28.9874% | 1.8059 4.48 0.02 2.55 0.01 4.76
SourceClass.compileClass 26.0361% | 1.7408 5.14 6.53 0.98 0.85 16.26
Assembler.collect 1.8285% | 1.6994 4.96 4.58 1.23 0.52 13.64
Parser.parseClass 22.6849% | 1.4789 2.93 5.52 0.54 0.44 18.26
ConstantPool.write 5.3863% | 1.0231 1.20 0.19 0.33 0.08 6.26
benchmark average n/a | 1.6747 | 4.28 4.48 1.32 0.66 13.26
mpegaudio

garbage collector 7.9994% | 1.7795 4.15 0.03 2.62 0.01 4.71
Ib.read 20.7281% | 0.8602 1.41 1.17 0.01 | <0.01 6.38
t.0 75.1119% | 0.8430 0.82 0.49 | <0.01 | <0.01 2.29
benchmark average n/a | 0.8157 1.07 0.47 0.03 0.02 3.25
mtrt

Scene.RenderScene 1.9640% | 2.3249 | 12.32 18.74 0.21 0.25 35.98
garbage collector 28.0391% | 1.7829 3.73 0.02 2.40 | <0.01 4.47
Scene.GetLightColor 23.7782% | 1.4919 9.74 3.29 0.68 0.03 8.95
Scene.Shade 36.2558% | 1.3496 7.21 2.84 0.42 0.05 11.42
Scene.ReadPoly 2.4275% | 1.2909 1.52 3.32 0.12 0.10 8.88
benchmark average n/a | 1.5389 8.27 2.66 1.03 0.07 7.18
Jjack

Jack_the_Parser_Generator._Jack3_1 2.34092% | 1.9655 5.84 5.19 0.57 0.22 11.53
garbage collector 41.5561% | 1.7741 4.04 0.02 2.59 0.01 4.36
Jack_the_Parser_Generator.production 1.87112% | 1.7039 4.38 7.41 0.51 0.73 15.16
Jack_the_Parser_Generator.jack_input 2.8412% | 1.6014 3.59 6.26 0.38 0.56 13.69
Jack_the_Parser_Generator.expansion_choices 20.5098% | 1.5546 4.46 7.54 0.22 0.23 15.94
Jack_the_Parser_Generator.java_declarations_and_code | 19.4081% | 1.3648 2.70 5.1 0.11 0.09 12.64
Jack_the_Parser_Generator_Internals.db_process 2.78693% | 1.2737 2.61 1.61 0.59 0.28 4.74
ParseGen.build 2.6689% | 1.1157 2.27 0.37 0.69 0.06 2.41
benchmark average n/a | 1.5976 3.83 3.58 1.19 0.24 9.58
PseudoJBB

DeliveryTransaction.process 2.7597% | 3.0722 8.74 9.95 6.45 2.61 17.32
garbage collector 22.9744% | 2.1581 5.76 0.03 3.59 | <0.01 4.35
TransactionManager.go 57.9074% | 2.1219 6.77 .77 2.91 0.75 11.08
benchmark average n/a 2.046 6.02 5.02 2.69 0.57 9.13

Table 6: Interesting methods from the SPECjvm98 and SPECjbb2000 (as observed in PseudoJBB) benchmark
suites. The L1 and L2 I-cache miss rates, L1 and L2 D-cache miss rates and the branch misprediction rate
are given as the number of events per 1,000 instructions.

changing the code layout to improve the branch pre-
dictability.

e Poor I-cache behavior can be observed for e.g. the
expansion_choices method in jack.

e For the SPECjvm98 benchmarks, the GC shows a very
consistent behavior, with a CPI that remains around
1.77. Also, GC shows a very good I-cache behavior
both on L1 and L2. This due to the fact that GC
(i) usually can take quite some time, hence the initial
cache misses can be made up for by a longer execution
time, and (ii) GC code is usually quite compact.

6. RELATED WORK

The first subsection details on related work done on char-
acterizing Java workloads. In the second subsection, we dis-
cuss phase classification and detection techniques.

6.1 Java workload characterization

Cain et al. [9] characterize the Transaction Processing
Council’s TPC-W web benchmark which is implemented
in Java. TPC-W is designed to exercise the web server
and transaction processing system of a typical e-commerce
web site. They used both hardware execution (on an IBM
RS/6000 S80 server with 8 RS64-III processors) and simu-
lation in their analysis.

Karlsson et al. [19] study the memory system behavior
of Java-based middleware. To this end, they study the
SPECjbb2000 and SPECjAppServer2001 benchmarks on real
hardware as well as through simulation. For the real hard-
ware measurements, they use the hardware counters on a 16-
processor Sun Enterprise 6000 multiprocessor server. They
measure performance characteristics over the complete bench-
mark run and make no distinction between the VM and the
execution phases of the application.

Luo et al. [21] compare SPECjbb2000 versus SPECweb99,
VolanoMark and SPEC CPU2000 on three different hard-
ware platforms: the IBM RS64-1II, the IBM POWERS3-II
and the Intel Pentium III. All measurements were done us-
ing performance counters and measure aggregate behavior.

Eeckhout et al. [15] measure various performance counter
events and use statistical data analysis techniques to analyze
Java workload behavior at the microprocessor level. One
particular statistical data analysis technique that is used in
that paper is principal components analysis which allows to
reduce the dimensionality of the data set. This reduced data
set allows for easier reasoning. In that work, the authors also
measured aggregate performance characteristics and made
no distinction between phases of execution.

Dufour et al. [14] present a set of architecture-independent
metrics for describing dynamic characteristics of Java ap-
plications. All these metrics are bytecode-level program
characteristics and measure program size, the intensiveness
of various data structures (arrays, pointers, floating-point
operations), memory use, concurrency, synchronization and
the degree of polymorphism.

Dmitriev [12] presents a bytecode-level profiling tool for
Java applications, called JFluid. During a typical JFluid
session, the VM is started with the Java application without
any special preparation. Subsequently, the tool is attached
to the VM, the application is instrumented, the results are
collected and analyzed on-line, and the tool is detached from

the VM. The instrumentation is done by injecting instru-
mentation bytecodes into methods of a running program. In
JF1luid, the user needs to specify which call subgraph, called
a ‘task’ by Dmitriev, from an arbitrary root method is to be
instrumented. This method has two major differences with
our approach: (i) we do not operate at the bytecode level
but at the lower microprocessor level, and (ii) we provide
a means to automatically detect these ‘tasks’. This relieves
the user from manually selecting major tasks of execution.

Sweeney et al. [28] present a system to measure micro-
processor level behavior of Java workloads. To this end,
they generate traces of hardware performance counter val-
ues while executing Java applications. This is done for each
Java thread and for each microprocessor on which the thread
is running. The latter can be useful in case of a multipro-
cessor environment. The infrastructure for reading perfor-
mance counter values used by Sweeney et al. is exactly the
same as the one used in this paper—using HPM in the Jikes
RVM—except for the fact that our measurements are done
on an IA-32 ISA platform opposed to the PowerPC ISA plat-
form. Sweeney et al. read the performance counter values
on every virtual context switch in the VM. This informa-
tion is collected for each virtual processor and for each Java
thread, and written in a per virtual processor record buffer.
Sweeney et al. also present a tool for graphically exploring
the performance counter traces. The major difference be-
tween the work by Sweeney et al. and this paper, is that we
collect performance counter values on a per-phase basis as
opposed to the timing-driven approach of taking one sample
on every virtual context switch. The benefit of measuring
performance counter values on a per-phase basis is that per-
formance counter values can be easily linked to the code
that is executed in the phase. We believe this is particularly
useful for analysis in general, and for application and VM
developers in particular. Moreover, our approach is more
general than the approach by Sweeney et al. since the infor-
mation we obtain can be easily transformed to behavioral
information over time. This can be done by ordering our
information on a time-line basis. Additionally, Sweeney et
al. use an on-line approach, while we essentially perform an
offline analysis.

6.2 Program phases

Several techniques that have been proposed in the recent
literature to detect program phases divide the total program
execution in fixed intervals. For each interval, program char-
acteristics are measured during program execution. When
the difference in program characteristics between two con-
secutive intervals exceeds a given threshold, the algorithm
detects a phase change. These approaches are often re-
ferred to as temporal techniques. The proposed temporal
techniques all differ in what program characteristics need
to be measured over the fixed interval. Balasubramonian et
al. [6] compute the number of dynamic conditional branches
executed. A phase change is detected when the difference
in branch counts between consecutive intervals exceeds a
threshold. This threshold is adjusted dynamically during
program execution to match the program’s execution behav-
ior. Dhodapkar and Smith [11] use the instruction working
set or the instructions executed at least once. Since repre-
senting a complete working set is impractical, especially in
hardware, the authors propose working set signatures which
are lossy-compressed representations of working sets. Work-

ing set signatures are compared using a relative signature
distance. A program phase change is detected when the
relative signature distance between consecutive intervals ex-
ceeds a given threshold. Sherwood et al. [25, 26] use basic
block vectors (BBVs) to identify phases. A BBV is a vec-
tor in which the elements count the number of times each
static basic block is executed in the fixed interval. These
BBVs are weighted by the number of instructions in the
given basic block. A phase change is detected when the
Manhattan distance between two consecutive intervals ex-
ceeds a given threshold. They consider both static and dy-
namic methods for identifying phases in [25] and [26], re-
spectively. The purpose of their static phase classification
approach was to identify equally behaving intervals through-
out a program execution so that one single representative
interval for each phase can be used for efficient simulation
studies. In a follow-up study, Lau et al. [20] study several
structures for classifying program execution phases. They
study approaches using basic blocks, loops, procedures, op-
codes, register usage and memory address information. In
contrast to the previously mentioned approaches which all
use micro-architecture-independent characteristics—i.e. the
metrics are only dependent on the instruction set architec-
ture (ISA) and not on the micro-architecture—Duesterwald
et al. [13] use micro-architecture-dependent characteristics
to detect phases. The metrics used by them are the instruc-
tion mix, the branch prediction accuracy, the cache miss rate
and the number of instructions executed per cycle (IPC).
These metrics are measured using performance counters over
fixed intervals of 10 milliseconds.

Next to temporal phase detection approaches, there exist
a number of approaches that do not use fixed intervals. Bala-
subramonian et al. [6] consider procedures to identify phases.
They consider non-nested and nested procedures as phases.
A non-nested procedure is a procedure that includes its com-
plete call graph, i.e., including all the methods it calls, as
is done in this paper. A nested procedure does not include
its callees. They concluded that non-nested procedures are
better performing than nested procedures. Huang et al. [17]
also use procedures to identify phases. The method used
in our work to identify method-level phases of execution—
using Oweight and Ograin —is based on the approach proposed
by Huang et al. Next to this static approach, they also pro-
pose a hardware-based call stack mechanism to identify pro-
gram phase changes. This paper differs from the one by
Huang et al. for at least three reasons. First, we explore the
technique for detecting phases in more detail by quantifying
the overhead and coverage as a function of Oyeight and Ograin -
Huang et al. chose fixed Oyeight = 5% and Ograin = 1,000 cy-
cles in their experiments. Second, we study Java workloads
whereas Huang et al. studied SPEC CPU2000 benchmarks.
Java workloads provide several additional challenges over
C-style workloads because of the managed run-time envi-
ronment. Third, the focus of the work by Huang et al. was
on exploiting phase behavior for energy-efficient computing.
The focus of our work is on using phase behavior to increase
the understanding during whole-program analysis

7. CONCLUSIONS AND FUTURE WORK

Java workloads are complex pieces of software in which
the Java application closely interacts with the VM. In addi-
tion, the applications themselves are becoming increasingly
complex due to the ever-increasing processing power of cur-

rent microprocessor systems. Because of this, automatic
tools for characterizing such software systems are becoming
paramount during performance analysis.

The purpose of this paper was to study method-level phase
behavior of Java applications. In other words, our goal
was to identify methods (including their callees) that ex-
hibit similar behavior within the phase and dissimilar be-
havior between the phases. The phase analysis framework
presented in this paper consists of three steps. In the first
step, we measure the execution time for each method in-
vocation using hardware performance monitors which are
made available through the Jikes RVM HPM API. The sec-
ond step analyzes this information using an off-line tool and
selects a number of phases. These phases are subsequently
characterized in the third step using performance counters.
This characterization includes measuring a number of micro-
processor events such as cache miss rates, TLB miss rates,
branch misprediction rates, etc. for each selected phase.

Using this framework, we investigated the phase behav-
ior of both the SPECjvm98 and SPECjbb2000 benchmark
suite. In a first set of experiments, we have compared the
characteristics of the Java application versus the various VM
components. We concluded that Java workloads spend a
significant portion of their total execution time (up to 46%)
in the VM, more specifically in the garbage collector. In
addition, the VM exhibits a significantly different behavior
from the Java application, and this can vary widely over
different applications. In a second set of experiments, we
have focused on the method-level phase behavior of the Java
application itself. We have shown that our phase analy-
sis technique is capable of reliably discriminating method-
level phases since a larger variability is observed between the
phases than within the phases. We have also shown that the
overhead incurred during profiling is small.

Particularly novel compared to existing work is the fact
that our framework can link the microprocessor-level in-
formation to the methods in the Java application’s source
code. This provides a way for programmers to identify per-
formance bottlenecks automatically which can guide them
while optimizing their software.

In future work we will extend the ideas presented in this
paper as several future research directions open up. First,
we will explore on-line phase identification. Detecting and
selecting phases at run-time is interesting for program anal-
ysis because we could eliminate the required training run. A
second future direction is the development of a framework
capable of both visualizing and replaying the profile infor-
mation captured by our tool. Such a framework could result
in new contributions that help gain deep understanding of
program behavior of Java applications. A third possible di-
rection is to develop techniques that are capable of exploit-
ing the collected phase information. The insights obtained
in this paper can be beneficial for VM, garbage collector and
compiler optimizations. Furthermore, the information could
lend itself to predict the behavior of Java applications based
on the method-level phase behavior.

Acknowledgments

Andy Georges is supported by the Institute for the Pro-
motion of Innovation by Science and Technology in Flan-
ders (IWT) in the CoDAMoS project, and Dries Buytaert is
supported by an IWT grant. Lieven Eeckhout is a Postdoc-
toral Fellow of the Fund for Scientific Research—Flanders

(Belgium) (F.W.O.—Vlaanderen). This research was also
funded by Ghent University.

8. REFERENCES
[1] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman.

2

[9

10

]

Compilers: principles, techniques, and tools.
Addison-Wesley Longman Publishing Co., Inc., 1986.
B. Alpern, B. Alpern, C. R. Attanasio, J. J. Barton,
M. G. Burke, P. Cheng, J.-D. Choi, A. Cocchi, S. J.
Fink, D. Grove, M. Hind, S. F. Hummel, D. Lieber,
V. Litvinov, M. F. Mergen, T. Ngo, J. R. Russell,

V. Sarkar, M. J. Serrano, J. C. Shepherd, S. E. Smith,
V. C. Sreedhar, H. Srinivasan, and J. Whaley. The
Jalapefio Virtual Machine. IBM Systems Journal,
39(1):211-238, February 2000.

Matthew Arnold, Stephen Fink, David Grove, Michael
Hind, and Peter F. Sweeney. Adaptive optimization in
the Jalapeno JVM. In Proceedings of the 15th ACM
SIGPLAN conference on Object-oriented
programming, systems, languages, and applications
(OOPSLA) 2000, pages 47-65. ACM, 2000.

Matthew Arnold, Michael Hind, and Barbara G.
Ryder. Online feedback-directed optimization of Java.
In Proceedings of the 17th ACM SIGPLAN conference
on Object-oriented Programming, Systems, Languages,
and Applications (OOPSLA) 2002, pages 111-129.
ACM, 2002.

Vasanth Bala, Evelyn Duesterwald, and Sanjeev
Banerjia. Dynamo: a transparent dynamic
optimization system. In Proceedings of the ACM
SIGPLAN 2000 conference on Programming Language
Design and Implementation (PLDI) 2000, pages 1-12.
ACM, 2000.

Rajeev Balasubramonian, David Albonesi, Alper
Buyuktosunoglu, and Sandhya Dwarkadas. Memory
hierarchy reconfiguration for energy and performance
in general-purpose processor architectures. In
Proceedings of the 38rd annual ACM/IEEE
international symposium on Microarchitecture, pages
245-257. ACM, 2000.

S. Browne, J. Dongarra, N. Garner, G. Ho, and

P. Mucci. A portable programming interface for
performance evaluation on modern processors. The
International Journal of High Performance Computing
Applications, 14(3):189-204, 2000.

Michael G. Burke, Jong-Deok Choi, Stephen Fink,
David Grove, Michael Hind, Vivek Sarkar, Mauricio J.
Serrano, V. C. Sreedhar, Harini Srinivasan, and John
Whaley. The Jalapefio dynamic optimizing compiler
for Java. In Proceedings of the ACM 1999 conference
on Java Grande, pages 129-141. ACM, 1999.

Harold W. Cain, Ravi Rajwar, Morris Marden, and
Mikko H. Lipasti. An architectural evaluation of Java
TPC-W. In Proceedings of the IEEE International
Symposium on High-Performance Computer
Architecture. IEEE Computer Society, 2001.

Ashutosh S. Dhodapkar and James E. Smith.
Managing multi-configuration hardware via dynamic
working set analysis. In Proceedings of the 29th annual
international symposium on Computer architecture,
pages 233-244. IEEE Computer Society, 2002.

[11] Ashutosh S. Dhodapkar and James E. Smith.

(14]

(16]

(17]

(18]

(19]

20]

21]

(22]

23]

Comparing program phase detection techniques. In
Proceedings of the 36th Annual IEEE/ACM
International Symposium on Microarchitecture, page
217. IEEE Computer Society, 2003.

Mikhail Dmitriev. Selective profiling of Java
applications using dynamic bytecode instrumentation.
In Proceedings of the IEEE International Symposium
on Performance Analysis of Systems and Software.
IEEE Computer Society, 2004.

Evelyn Duesterwald, Calin Cascaval, and Sandhya
Dwarkadas. Characterizing and predicting program
behavior and its variability. In Proceedings of the 12th
International Conference on Parallel Architectures and
Compilation Techniques, page 220. IEEE Computer
Society, 2003.

Bruno Dufour, Karel Driesen, Laurie Hendren, and
Clark Verbrugge. Dynamic metrics for Java. In
Proceedings of the 18th ACM SIGPLAN conference on
Object-oriented programing, systems, languages, and
applications, pages 149-168. ACM, 2003.

Lieven Eeckhout, Andy Georges, and Koen De
Bosschere. How Java programs interact with virtual
machines at the microarchitectural level. In
Proceedings of the 18th ACM SIGPLAN conference on
Object-oriented programming, systems, languages, and
applications (OOPSLA) 2003, pages 169-186. ACM,
2003.

Stephen J. Fink and Feng Qian. Design,
implementation and evaluation of adaptive
recompilation with on-stack replacement. In
Proceedings of the international symposium on Code
generation and optimization, pages 241-252. IEEE
Computer Society, 2003.

Michael C. Huang, Jose Renau, and Josep Torrellas.
Positional adaptation of processors: application to
energy reduction. In Proceedings of the 30th annual
international symposium on Computer architecture,
pages 157-168. ACM, 2003.

R. A. Johnson and D.W. Wichern. Applied
Multivariate Statistical Analysis. Prentice Hall, fifth
edition, 2002.

Martin Karlsson, Kevin E. Moore, Erik Hagersten,
and David A. Wood. Memory system behavior of
Java-based middleware. In Proceedings of the IEEE
International Symposium on High-Performance
Computer Architecture. IEEE Computer Society, 2003.
Jeremy Lau, Stefan Schoenmackers, and Brad Calder.
Structures for phase classification. In Proceedings of
the IEEE International Symposium on Performance
Analysis of Systems and Software. IEEE Computer
Society, 2004.

Yue Luo, Juan Rubio, Lizy Kurian John, Pattabi
Seshadri, and Alex Mericas. Benchmarking internet
servers on superscalar machines. Computer,
36(2):34-40, 2003.

Matthew C. Merten, Andrew R. Trick, Ronald D.
Barnes, Erik M. Nystrom, Christopher N. George,
John C. Gyllenhaal, and Wen mei W. Hwu. An
architectural framework for run-time optimization.
IEEE Transactions on Computers, 50(6):567-589,
2001.

R Development Core Team. R: A language and

[24]

[28]

environment for statistical computing. R Foundation
for Statistical Computing, Vienna, Austria, 2003.
ISBN 3-900051-00-3.

Ramesh Radhakrishnan, N. Vijaykrishnan,

Lizy Kurian John, Anand Sivasubramaniam, Juan
Rubio, and Jyotsna Sabarinathan. Java runtime
systems: Characterization and architectural
implications. IEEE Transactions on Computers,
50(2):131-146, 2001.

Timothy Sherwood, Erez Perelman, Greg Hamerly,
and Brad Calder. Automatically characterizing large
scale program behavior. In Proceedings of the 10th
international conference on architectural support for
programming languages and operating systems
(ASPLOS-X), pages 45-57. ACM, 2002.

Timothy Sherwood, Suleyman Sair, and Brad Calder.
Phase tracking and prediction. In Proceedings of the
30th annual international symposium on Computer
architecture, pages 336-349. ACM, 2003.

Yefim Shuf, Mauricio J. Serrano, Manish Gupta, and
Jaswinder Pal Singh. Characterizing the memory
behavior of Java workloads: a structured view and
opportunities for optimizations. In Proceedings of the
2001 ACM SIGMETRICS international conference on
Measurement and modeling of computer systems,
pages 194-205. ACM, 2001.

Peter F. Sweeney, Matthias Hauswirth, Brendon
Cahoon, Perry Cheng, Amer Diwan, David Grove, and
Michael Hind. Using hardware performance monitors
to understand the behavior of Java applications. In
Proceedings of the Third Virtual Machine Research
and Technology Symposium, pages 57-72. USENIX,
2004.

