
Building Java Program Analysis Tools using Javana

Dries Buytaert Jonas Maebe Lieven Eeckhout Koen De Bosschere

ELIS, Ghent University, Belgium

{dbuytaer,jmaebe,leeckhou,kdb}@elis.UGent.be

Abstract

Javana is a tool for creating customized Java program analysis
tools. It comes with an easy-to-use instrumentation framework that
enables programmers to develop profiling tools that crosscut the
Java application, the Java Virtual Machine (JVM) and the native
execution layers. The goal of this poster is to demonstrate the power
of Javana, using object lifetime computation as an example.

Object lifetime has proven to be useful for analyzing and op-
timizing the behavior of Java applications. Computing object life-
time is conceptually simple, however, in practice it is often chal-
lenging. The JVM needs to be adjusted in numerous ways in order
to track all possible accesses to all objects, including accesses that
occur through the Java Native Interface (JNI), the standard class
libraries, and the JVM implementation itself. Capturing all object
accesses through manual instrumentation requires an in-depth un-
derstanding of the JVM and its libraries. We show that using Javana
is both easier and more accurate than manual instrumentation.

Categories and Subject Descriptors D.2.5 [Testing and Debug-
ging]: Tracing; D.3.4 [Processors]: Run-time Environments

General Terms Experimentation, Measurement, Performance

Keywords Customized Program Analysis Tool, Java, Aspect-
Oriented Instrumentation

1. Javana

The popularity of high-level language virtualization software has
grown significantly over the recent years with programming envi-
ronments such as Java and .NET. Because of the tight entanglement
between the application and the virtualization software, it becomes
difficult to understand the behavior of such applications.

The Javana instrumentation framework provides the end user
with both high-level and low-level information [1]. The high-level
information relates to the Java application and the VM, such as
thread IDs, method IDs, source code line numbers, object IDs, ob-
ject types, etc. The low-level information consists of instruction
pointers and memory addresses. Running the Java application of
interest within the Javana system along with user-specified instru-
mentation routines then collects the desired profiles of the Java ap-
plication.

The Javana system consists of a VM along with a dynamic bi-
nary instrumentation tool that runs underneath the VM. The virtual

Copyright is held by the author/owner(s).

OOPSLA’06 October 22–26, 2006, Portland, Oregon, USA.

ACM 1-59593-491-X/06/0010.

machine communicates with the dynamic binary instrumentation
tool through an event handling mechanism. The virtual machine
informs the instrumentation layer about a number of events, for ex-
ample when an object is created, moved or collected, or when a
method is compiled, re-compiled, etc. Using this information, the
dynamic binary instrumentation tool builds a vertical map that links
instruction pointer and memory addresses to high-level language
concepts such as objects, methods, etc.

The dynamic binary instrumentation tool that is part of Javana
captures all natively executed machine instructions; this includes
instructions executed by the application code, instructions that are
part of the JVM code, and instructions that are part of the native
libraries.

The end result is that Javana knows for all native instructions
from what method and thread the instruction comes and to what
line of source code the instruction corresponds; and for all accessed
memory locations, Javana knows what objects are being accessed.
This allows for building a wide variety of profiling tools, such as
memory address tracing, vertical cache simulation, object lifetime
computation, etc., as shown in [1].

Javana is available for download at the following website:
http://www.elis.ugent.be/javana/.

2. Object lifetime

Knowing the allocation site and knowing where the object was last
used can help a programmer to rewrite the code in order to reduce
the memory consumption of the application or even improve overall
performance [2].

Computing object lifetimes without Javana is fairly compli-
cated. First, the virtual machine needs to be extended in order
to store the per-object lifetime information. Second, special care
needs to be taken so that the computed lifetimes do not get per-
turbed by the instrumentation code. Finally, all object references
need to be traced. This is far from trivial to implement. For ex-
ample, referencing the object’s header is required for accessing the
Type Information Block (TIB) or vertical lookup table (vtable) on
a method call, for knowing the object’s type, for knowing the ar-
ray’s length, etc. Also, accesses to objects in native methods in the
virtual machine or Java standard libraries need to be instrumented
manually. Implementing all of this in a virtual machine is very time
consuming, error-prone and will likely be incomplete.

Measuring the object lifetime within Javana on the other hand is
very easy to do and in addition, it is very accurate because it allows
for tracking all references to a given object. The skeleton of the
instrumentation specification is shown in Figure 1.

The figure illustrates that using Javana, building complex pro-
gram analysis tools only takes a few lines of code. The language
for building Java program profiling tools with Javana is inspired
by the Aspect-Oriented Programming (AOP) paradigm. Lines 1 to
4 define a per-object data structure to hold each object’s creation
time and last access time. Line 5 declares the global time. Time is

http://www.elis.ugent.be/javana/

0: #pragma requires object_info

1: typedef {

2: unsigned long long creation_time;

3: unsigned long long last_access;

4: } object_info_t;

5: static unsigned long long timestamp = 0;

6: after object:create (location_t const *loc, type_t const *type, void **userdata) {

7: object_info_t ** const objectinfo = (object_info_t**)userdata;

8: (*objectinfo) = diota_malloc(sizeof(object_info_t));

9: (*objectinfo)->creation_time = timestamp;

10: (*objectinfo)->last_access = 0;

11: }

12: before object:access (location_t const *loc, type_t const *type, void **userdata) {

13: object_info_t ** const objectinfo = (object_info_t**)userdata;

14: timestamp++;

15: (*objectinfo)->last_access = timestamp;

16: }

17: before nonobject:access (location_t const *loc, type_t const *type, void **userdata) {

18: timestamp++;

19: }

Figure 1. Object lifetime computation tool using Javana.

expressed in terms of the number of memory accesses, and is main-
tained by the functions below. Lines 6 to 11 define a function that
will be called after each object is created; it captures each object’s
creation time. Lines 12 to 16 define a function that will be called
just before an object is accessed. The function is responsible for in-
crementing the global timestamp counter, and updating the object’s
last access time. If memory not belonging to an object is accessed,
the global timestamp counter is increased by invoking the function
specified on line 17 to 19. For more information about the Javana
language, we refer to [1].

In order to evaluate the accuracy of object lifetime computa-
tions without Javana, we have set up the following experiment. We
compute the object lifetimes under two scenarios. The first scenario
computes the object lifetime when taking into account all memory
accesses as done using Javana. The second scenario uses access in-
formation captured by Javana to compute the object lifetime while
excluding all object accesses from non-Java code; this excludes all
object accesses from native functions. This second scenario emu-
lates current practice of building an object lifetime measurement
tool within the virtual machine, without Javana. The results for the
SPECjvm98 benchmarks1 and the DaCapo benchmarks2 (version
beta050224) are shown in Figure 2. The graph shows the percent-
age of objects for which an incorrect lifetime is computed in cur-
rent practice, i.e., when not including accesses to objects through
JNI functions. We observe large error percentages for a couple of
benchmarks, namely fop (4%), antlr (6.5%) and ps (19%). As
such, we conclude that current practice of computing object life-
time without Javana can yield incorrect results, and this could be
misleading when optimizing code based on these measurements.

3. Summary

Understanding the behavior of Java applications is non-trivial be-
cause of the tight entanglement of the application and the vir-
tual machine. Current practice of building Java program analy-
sis tools involves manually instrumenting the JVM which is both
time-consuming and error-prone. In this abstract we demonstrated
through the example of object lifetime computation that Javana is

1 http://www.spec.org/jvm98/

2 http://www-ali.cs.umass.edu/DaCapo/gcbm.html

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

20%

c
o
m

p
re

s
s

ja
v
a
c

ja
c
k

d
b

m
tr

t

je
s
s

m
p
e
g
a
u
d
io

h
s
q
ld

b

a
n
tl
r

jy
th

o
n

x
a
la

n

fo
p

p
s

p
e
rc

e
n
ta

g
e

o
b
je

c
ts

incorrect lifetime

Figure 2. The percentage objects for which a non-Javana instru-
mentation results in incorrect lifetime computations.

an easy-to-use and flexible system for building customized Java
program analysis tools.

Acknowledgments

Dries Buytaert and Jonas Maebe are supported by a grant from the
Institute for the Promotion of Innovation by Science and Technol-
ogy in Flanders (IWT). Lieven Eeckhout is a Postdoctoral Fellow
of the Fund for Scientific Research—Flanders (Belgium) (FWO—
Vlaanderen). This research was also funded by Ghent University.

References

[1] J. Maebe, D. Buytaert, L. Eeckhout, and K. De Bosschere. JAVANA:
a system for building customized Java program analysis tools. In
Proceedings of the ACM SIGPLAN Conference on Object-Oriented

Programming, Systems and Languages (OOPSLA), October 2006.

[2] R. Shaham, E. K. Kolodner, and M. Sagiv. Heap profiling for space-
efficient Java. In Proceedings of the ACM SIGPLAN Conference on

Programming Language Design and Implementation (PLDI), pages
104–113, 2001.

http://www.spec.org/jvm98/
http://www-ali.cs.umass.edu/DaCapo/gcbm.html

	Javana
	Object lifetime
	Summary

