
Java Performance Evaluation through
Rigorous Replay Compilation

Andy Georges Lieven Eeckhout Dries Buytaert
Department of Electronics and Information Systems, Ghent University, Belgium

{ageorges,leeckhou}@elis.ugent.be, dries@buytaert.net

Abstract
A managed runtime environment, such as the Java virtual
machine, is non-trivial to benchmark. Java performance is
affected in various complex ways by the application and
its input, as well as by the virtual machine (JIT optimizer,
garbage collector, thread scheduler, etc.). In addition, non-
determinism due to timer-based sampling for JIT optimiza-
tion, thread scheduling, and various system effects further
complicate the Java performance benchmarking process.

Replay compilation is a recently introduced Java perfor-
mance analysis methodology that aims at controlling non-
determinism to improve experimental repeatability. The key
idea of replay compilation is to control the compilation load
during experimentation by inducing a pre-recorded compi-
lation plan at replay time. Replay compilation also enables
teasing apart performance effects of the application versus
the virtual machine.

This paper argues that in contrast to current practice
which uses a single compilation plan at replay time, multi-
ple compilation plans add statistical rigor to the replay com-
pilation methodology. By doing so, replay compilation bet-
ter accounts for the variability observed in compilation load
across compilation plans. In addition, we propose matched-
pair comparison for statistical data analysis. Matched-pair
comparison considers the performance measurements per
compilation plan before and after an innovation of interest
as a pair, which enables limiting the number of compilation
plans needed for accurate performance analysis compared
to statistical analysis assuming unpaired measurements.

Categories and Subject Descriptors D.2.8 [Software En-
gineering]: Metrics—Performance measures; D.3.4 [Pro-
gramming Languages]: Processors—Run-time environments

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
OOPSLA’08 October 19–23, 2008, Nashville, Tennessee, USA
Copyright c© 2008 ACM . . . $5.00

General Terms Experimentation, Measurement, Perfor-
mance

Keywords Java, virtual machine, performance evaluation,
benchmarking, replay compilation, matched-pair compari-
son

1. Introduction
Managed runtime systems, such as Java virtual machines,
are challenging to benchmark because there are various fac-
tors affecting overall performance, such as the application
and its input, the virtual machine (VM) and its configura-
tion (memory management strategy, heap size, dynamic op-
timizer, thread scheduler, etc.), and also the hardware on
which the benchmarking experiment is done. To complicate
things even further, non-determinism leads to different per-
formance results when running the same experiment multi-
ple times. An important source of non-determinism comes
from timer-based sampling for selecting candidate methods
for JIT compilation and optimization. Timer-based sampling
may result in different samples being taken across multiple
runs of the same experiment, which may lead to different
methods being optimized, and which in its turn results in
execution time variability. Although some VMs use method
invocation counters to find optimization candidates [13, 28],
most VMs use timer-based sampling [1, 2, 11, 25, 34, 36]. In
particular, VMs that use multiple levels of optimization rely
exclusively on sampling for identifying optimization candi-
dates because of the high overhead invocation counters in-
troduce in optimized code.

Researchers are well aware of the difficulty in under-
standing and benchmarking managed runtime system perfor-
mance. This is reflected in the growing body of work on Java
performance analysis, see for example [3, 16, 18, 24, 35].
Some recent work focuses on experimental design [3, 5, 14],
i.e., choosing an appropriate set of benchmarks and inputs,
VMs, garbage collectors, heap sizes, and hardware plat-
forms; other recent work focuses on data analysis [15], i.e.,
how to analyze and report the performance results in the
presence of non-determinism.

One particularly interesting and increasingly widely used
experimental design methodology is replay compilation [19,

29]. Replay compilation fixes the compilation load through
a so called compilation plan which is determined from a
profile run. The compilation plan then forces the VM to
compile each method to a predetermined optimization level
in the replay run. By doing so, replay compilation eliminates
the non-determinism due to timer-based JIT optimization.
This facilitates performance analysis.

Current practice in replay compilation uses a single com-
pilation plan during replay. In this paper, we argue that the
performance results obtained for one compilation plan may
not be representative for other compilation plans, and may
potentially lead to misleading results in practical research
studies. We therefore advocate multiple compilation plans
in order to better represent average behavior. We propose
a matched-pair comparison as the statistically rigorous data
analysis method when comparing design alternatives un-
der replay compilation using multiple compilation plans. A
matched-pair comparison amortizes part of the overhead in-
troduced by multiple compilation plans.

In this paper, we make the following contributions:

• We show that different compilation plans lead to statis-
tically significant execution time variability. The reason
is that different compilation plans may lead to different
methods being compiled to different optimization levels.
And this execution time variability may lead to incon-
sistent conclusions across compilation plans in practical
research studies.

• We advocate replay compilation using multiple compila-
tion plans in order to capture the execution time variabil-
ity across compilation plans. Multiple compilation plans
result in a more rigorous replay compilation methodol-
ogy compared to prior work which considers a single
compilation plan during replay.

• We propose matched-pair comparison for analyzing the
performance numbers obtained from replay compilation
using multiple compilation plans. Matched-pair compari-
son considers the performance numbers for a given com-
pilation plan before and after the innovation as a pair.
In general, this yields tighter confidence intervals than
statistical analysis assuming unpaired measurements. Or,
for the same level of accuracy, i.e., for the same con-
fidence interval size, fewer compilation plans are to be
considered under matched-pair comparison.

• We demonstrate that for a given experimentation time
budget, it is beneficial to consider more compilation plans
rather than more runs per compilation plan.

Although the experimental results in this paper are ob-
tained using Jikes RVM [1], we believe that the overall con-
clusions from this paper generalize to other VMs that use
timer-based sampling for driving just-in-time compilation
and optimization. In addition, we believe that these conclu-
sions also generalize to VMs that use invocation counters
when running multithreaded benchmarks; different thread

schedules may lead to different methods being optimized to
different levels of optimization at different points in time.
Multiple compilation plans will capture these differences.

This paper is organized as follows. In Section 2, we
first describe replay compilation as an experimental design
methodology for managed runtime systems. Section 3 ex-
plains the experimental setup used in this paper. In Section 4
we evaluate the runtime variability across compilation plans
at replay time, and how this may affect conclusions in prac-
tical research studies. Section 5 presents matched-pair com-
parison for the statistical analysis of performance numbers
obtained from multiple compilation plans. In Section 6 we
describe the overall framework for rigorous replay compila-
tion using multiple compilation plans. We finally conclude
in Section 7.

2. Replay Compilation
Replay compilation [19, 29] is a recently introduced ex-
perimental design methodology that fixes the compila-
tion/optimization load in a Java virtual machine execution.
As mentioned before, the motivation is to control non-
determinism, and by doing so to facilitate performance anal-
ysis.

2.1 Replay compilation mechanism
Replay compilation requires a profiler and a replayer. The
profiler, see Figure 1, records the profiling information used
to drive the compilation decisions, e.g., edge counts, path
and dynamic call graph information, etc., as well as the
compilation decisions, e.g., method X was compiled at op-
timization level Y. Typically, researchers run multiple ex-
periments yielding multiple profiles (p profiles in Figure 1),
and a single compilation plan is determined from these pro-
files. The replayer then reads the compilation plan and upon
the first invocation of a method, it induces the compila-
tion plan by optimizing the method to the optimization level
specified in the compilation plan. By doing so, the compi-
lation/optimization load is fixed which forms the basis of
comparison when evaluating the efficacy of an innovation of
interest.

During the replay phase, a benchmark is iterated twice
within a single VM invocation. The first iteration includes
the compilation overhead according to the compilation plan
— this is referred to as the mix run. The second iteration then
is the timing run with adaptive (re)compilation turned off —
this is called the stable run. In order to fix the garbage col-
lection load in the stable run, a full-heap garbage collection
is typically done between the mix and the stable runs.

2.2 Design options
Researchers typically select a single compilation plan out of
a number of profiles, or, alternatively, combine these profiles
into a single compilation plan. Some researchers pick the
best profile as the compilation plan, i.e., the profile that

p profiles

optimized
method

unoptimized
method

benchmark

...

...

...

...

...

p
VM

 in
vo

ca
tio

ns

q benchmark iterations

... ...

optimal
plan

majority
plan

Figure 1: The profiling phase for replay compilation. There
are p VM invocations, and each VM invocation runs q
benchmark iterations, yielding p profiles. Current practice
then selects a single compilation plan from these profiles: the
optimal plan (yielding the fastest execution time), or the ma-
jority plan (combining all profiles through a majority vote).

yields the best overall performance, see for example [3, 6,
7, 10] — this is called the optimal plan. The motivation
for using an optimal plan is to assess an innovation on a
compilation plan that represents the best code quality. Others
select the median optimization level observed across the
profiles for each method [37]. Yet others select the methods
that are optimized in the majority of the profiles, and set the
optimization level for the selected methods at the highest
optimization levels observed in the majority of the profiles,
see for example [12, 19, 30, 29] — this is called the majority
plan. And yet others select the methods observed in the
intersection of multiple profiles [32].

Another design option relates to how many benchmark
iterations (represented by q in Figure 1) to consider when
collecting the profiles. As the benchmark is iterated multiple
times without restarting the VM, more and more methods
will be selected for JIT optimization, i.e., the code quality
will steadily improve as more and more methods get opti-
mized to higher levels of optimization. The question then is
when to collect the profile across these iterations. One op-
tion could be to finish the profile collection after the first
benchmark iteration, i.e., q = 1. Another option would be
to collect the profile across multiple benchmark iterations,
i.e., q > 1; this will result in a profile that represents better

code quality. In this paper, we consider both options, using
1-iteration (q = 1) and 10-iteration (q = 10) compilation
plans.

The final design option is how to configure the system
setup (virtual machine configuration, garbage collection
strategy, heap size, etc.) when collecting the profiles.

2.3 Discussion
A single compilation plan. Current practice in replay com-
pilation considers a single compilation plan during replay.
As we will show in this paper, this can be misleading. The
reason is that a single compilation plan does not account
for the variability observed in compilation load across multi-
ple runs under non-deterministic VM executions. By conse-
quence, a single compilation plan may not be representative
for the average behavior seen by an end user. We therefore
advocate using multiple compilation plans at replay time.
This is consistent with our prior work [15] on using statis-
tical data analysis for coping with non-determinism, which
advocates using an average performance number along with
a confidence interval computed from a number of bench-
marking experiments instead of picking a performance num-
ber from a single experiment.

Non-determinism. Replay compilation, although it con-
trols non-determinism to a large extent, does not completely
eliminate non-determinism. There are a number of remain-
ing sources of non-determinism that replay compilation does
not control, e.g., thread scheduling. Different thread schedul-
ing decisions in time-shared and multi-threading environ-
ments across different runs of the same experiment can af-
fect performance. For example, different thread schedules
may lead to different points in time where garbage is be-
ing collected leading to different data layouts which may
affect memory system performance as well as overall per-
formance. Also, various system effects, such as interrupts,
introduce non-determinism when run on real hardware. To
cope with the non-determinism, in our prior work [15],
we recommended applying statistical analysis by comput-
ing the average performance number as well as confidence
intervals across multiple experiments. By controlling non-
determinism, replay compilation reduces the required num-
ber of measurements to reach statistically valid conclusions.

Replay compilation as experimental design. Replay com-
pilation is an experimental design setup that may be appro-
priate for some experiments but inappropriate for others. It’s
up to the experimenter who has a good understanding of
the system under measurement to determine whether replay
compilation is an appropriate experimental design setup.
Specifically, the implicit assumption for replay compilation
is that the innovation under evaluation does not affect com-
pilation decisions, i.e., the compiler/optimizer is assumed to
make the same compilation/optimization decisions irrespec-
tive of the innovation under evaluation. This may or may not
be a valid assumption depending on the experiment at hand.

2.4 Use-case scenarios
There are several use-case scenarios for which replay com-
pilation is a useful experimental design setup. We enumerate
a couple examples here as they are in use today — this enu-
meration illustrates the wide use of replay compilation as an
experimental design setup for managed runtime systems.

JIT innovation. JIT research, such as compiler/optimizer
innovation, may benefit from replay compilation as an exper-
imental setup. Researchers evaluating the efficacy of a JIT
innovation want to answer questions such as ‘How does my
innovation improve application code quality?’ ‘What is the
compilation time overhead that the innovation incurs?’ The
problem at hand is that in a virtual execution environment
with dynamic compilation, application code execution and
compilation overhead are intermingled. The question then is
how to tease apart the effect that the JIT innovation has on
code quality and compilation time?

Replay compilation is a methodology that enables teasing
apart code quality and compile time overhead, see for exam-
ple Cavazos and Moss [12], who study compiler scheduling
heuristics. The mix run provides a way of quantifying the
overhead the innovation has on compilation time. The stable
run provides a way of quantifying the effect of the innova-
tion on code quality.

Innovation in profiling and JVM innovation A research
topic that is related to JIT innovation is profiling, i.e., an im-
proved profiling mechanism provides a more accurate pic-
ture for analysis and optimization. For example, Bond and
McKinley [9] use replay compilation to gauge the overhead
of continuously maintaining a probabilistic calling context in
a Java virtual machine; the same research group uses similar
setups in [8] and [10]. Because the compilation load and the
resulting code quality is fixed, the stable run can be used for
performance and overhead measurement. Similarly, Schnei-
der et al. [31] optimize spatial locality by co-allocating ob-
jects in a generational garbage collector based on measure-
ments obtained from hardware performance monitors that
count cache misses. They use replay compilation to min-
imize the variability across multiple runs during measure-
ment.

GC innovation. Garbage collection (GC) research also
benefits from replay compilation. In fact, many recent
garbage collection research papers use replay compilation
as their experimental design methodology [3, 6, 7, 17, 19,
29, 30, 32, 37]. The reason why replay compilation is useful
for garbage collection research is that it fixes the compiler
load, and by doing so, it controls non-determinism which
facilitates the comparison of garbage collection alternatives.

GC research often uses the optimal plan under replay
compilation. The motivation for doing so is that if a GC strat-
egy degrades mutator locality, this is likely to be exposed
more by a compilation plan that represents higher code qual-
ity. Although an optimal plan is an important experimental

design choice for GC research for this reason, it may not
accurately represent user-perceived performance.

Other applications. There exist a number of other applica-
tions to replay compilation. Krintz and Calder [21] for ex-
ample annotate methods with analysis information collected
offline, similar to a compilation plan. These annotations sig-
nificantly reduce the time to perform dynamic optimizations.
Ogata et al. [27] use replay compilation to facilitate the de-
bugging of JIT compilers.

3. Experimental Setup
Before studying replay compilation in great detail, we first
describe our experimental setup. We discuss the virtual ma-
chine configurations, the benchmarks and the hardware plat-
forms considered in this paper. Finally, we also detail the
replay compilation setup.

3.1 Virtual machine configuration
We use the Jikes Research Virtual Machine (RVM) [1] which
is an open source Java virtual machine written in Java. Jikes
RVM employs baseline compilation to compile a method
upon its first execution; hot methods are sampled by an OS-
triggered sampling mechanism and subsequently scheduled
for further optimization. There are three optimization levels
in Jikes RVM: 0, 1 and 2. We use the February 12, 2007 SVN
version of Jikes RVM in all of our experiments.

As Jikes RVM employs timer-based sampling to detect
optimization candidates, researchers have implemented re-
play compilation in Jikes RVM to control non-determinism
using so called advice files — an advice file is a compila-
tion plan in this paper’s terminology. An advice file specifies
(i) the optimization level for each method compiled, (ii) the
dynamic call graph profile, and (iii) the edge profile. Advice
files are collected through a profile run: through command-
line arguments, Jikes RVM can be instructed to generate an
advice file just before program execution terminates. Then,
in the replay run, Jikes RVM compiles each method in the
advice file to the specified level upon a method’s first in-
vocation. If there is no advice for a method, the method is
compiled using Jikes RVM’s baseline compiler.

In some of our experiments we will be considering mul-
tiple garbage collection strategies across a range of heap
sizes. This is similar in setup to what garbage collection re-
search papers are doing — as mentioned before, many of
these garbage collection papers also employ replay compila-
tion as their experimental design. We consider five garbage
collection strategies in total, all provided by the Jikes’ Mem-
ory Management Toolkit (MMTk) [4]. The five garbage
collection strategies are: (i) CopyMS, (ii) GenCopy, (iii)
GenMS, (iv) MarkSweep, and (v) SemiSpace; the gener-
ational collectors use a variable-size nursery. We did not
include the GenRC, MarkCompact and RefCount collec-
tors from MMTk, because we were unable to successfully
run Jikes with the GenRC and MarkCompact collectors for

benchmark description min heap
size (MB)

compress file compression 24
jess puzzle solving 32
db database 32
javac Java compiler 32
mpegaudio MPEG decompression 16
mtrt raytracing 32
jack parsing 24

antlr parsing 32
bloat Java bytecode optimization 56
fop PDF generation from XSL-FO 56
hsqldb database 176
jython Python interpreter 72
luindex document indexing 32
pmd Java class analysis 64

Table 1: SPECjvm98 (top seven) and DaCapo (bottom
seven) benchmarks considered in this paper. The rightmost
column indicates the minimum heap size, as a multiple of
8MB, for which all GC strategies run to completion.

some of the benchmarks; and RefCount did yield perfor-
mance numbers that are statistically significantly worse than
any other GC strategy across all benchmarks.

3.2 Benchmarks
Table 1 shows the benchmarks used in this study. We use
the SPECjvm98 benchmarks [33] (first seven rows), as
well as seven DaCapo benchmarks [5] (next seven rows).
SPECjvm98 is a client-side Java benchmark suite consisting
of seven benchmarks. We run all SPECjvm98 benchmarks
with the largest input set (-s100). The DaCapo benchmark
suite is a recently introduced open-source benchmark suite;
we use release version 2006-10-MR2. We use the seven
benchmarks that execute properly on the February 12, 2007
SVN version of Jikes RVM. We use the default (medium
size) input set for the DaCapo benchmarks.

In all of our experiments, we consider a per-benchmark
heap size range, following Blackburn et al. [3]. We vary
the heap size from a minimum heap size up to 6 times this
minimum heap size, using increments of the minimum heap
size. The per-benchmark minimum heap sizes are shown in
Table 1.

3.3 Hardware platforms
Following the advice by Blackburn et al. [5], we consider
multiple hardware platforms in our performance evaluation
methodology: a 2.1GHz AMD Athlon XP, and a 2.8GHz
Intel Pentium 4. Both machines have 2GB of main memory.
These machines run the Linux operating system, version

2.6.18. In all of our experiments we consider an otherwise
idle and unloaded machine.

3.4 Replay compilation setup
The compilation plans are computed by running a bench-
mark on the Jikes RVM using the GenMS garbage collector
and a heap size that is 8 times the minimum heap size. In
this paper, we compute profiles after (i) a single iteration of
the benchmark within a single VM invocation (yielding 1-
iteration plans), and (ii) after 10 iterations of the benchmark
within a single VM invocation (yielding 10-iteration plans).
We compute separate compilation plans per hardware plat-
form. We perform a full GC between the mix and stable runs.

4. The Case for Multiple Compilation Plans
Having detailed our experimental setup, we now study the
accuracy of selecting a single compilation plan for driving
replay compilation. This study will make the case for multi-
ple compilation plans instead of a single compilation plan.

This is done in four steps. We first demonstrate that dif-
ferent compilation plans can lead to statistically significantly
different benchmark execution times. This is the case for
both GC time and mutator time. Second, we provide a rea-
son for this difference in execution time, by comparing the
methods that are compiled under different compilation plans.
Third, we present a case study in which we compare various
garbage collection strategies using replay compilation as the
experimental design setup. This case study demonstrates that
the conclusions taken from practical research studies may be
subject to the chosen compilation plan. Finally, we demon-
strate that a majority plan (which combines multiple profiles
into a single compilation plan) is no substitute for multiple
compilation plans.

However, before doing so, we first need to explain the
ANOVA statistical data analysis method which we will use
throughout this section.

4.1 Statistical background: ANOVA
Single-factor ANOVA. Analysis of Variance (ANOVA) [20,
23, 26] separates the total variation in a set of measurements
into a component due to random fluctuations in the mea-
surements versus a component due to the actual differences
among the alternatives. In other words, ANOVA separates
the total variation observed in (i) the variation observed be-
tween each alternative, and (ii) the variation within the alter-
natives, which is assumed to be a result of random effects in
the measurements. If the variation between the alternatives
is larger than the variation within each alternative, then we
conclude that there is a statistically significant difference be-
tween the alternatives; if not, the variability across the mea-
surements is attributed to random effects.

Although we will not describe the ANOVA mechanics
in great detail — we refer to a textbook on statistics for
a detailed description, see for example [20, 23, 26] — we

rather explain the outcome of the ANOVA. A single-factor
ANOVA splits up the total variation, sum-of-squares total
(SST), observed across all measurements into a term, sum-
of-squares due to the alternatives (SSA), that quantifies the
variation between the alternatives, versus a term, sum-of-
squares due to measurement errors (SSE), that quantifies
the variation within an alternative due to random errors.
Mathematically, this means that

SST = SSA + SSE.

The goal now is to quantify whether the variation SSA across
alternatives is ‘larger’ in some statistical sense than the vari-
ation SSE within each alternative. A simple way for doing
so is to compare the fractions SSA/SST and SSE/SST .
A statistically more rigorous approach is to apply a statistical
test, called the F-test, which is used to test whether two vari-
ances are significantly different. The F statistic is computed
as

F =
s2

a

s2
e

,

with
s2

a =
SSA

k − 1
and

s2
e =

SSE

k(n− 1)

with k alternatives, and n measurements per alternative. If
the F statistic is larger than the critical value F[1−α;(k−1),k(n−1)],
which is to be obtained from a precomputed table, we can
say that the variation due to differences among the alterna-
tives is significantly larger than the variation due to random
measurement noise at the (1−α) confidence level. A (1−α)
confidence interval, i.e., a confidence interval with a (1−α)
confidence level, means that there is a (1 − α) probability
that the variation due to differences between the alternatives
is larger than the variation due to random noise. In this paper
we will consider 95% confidence intervals.

ANOVA assumes that the variance in measurement error
is the same for all the alternatives. Also, ANOVA assumes
that the errors in the measurements for the different alter-
natives are independent and Gaussian distributed. However,
ANOVA is fairly robust with respect to non-Gaussian dis-
tributed measurements, especially in case there is a balanced
number of measurements for each of the alternatives. This
is the case in our experiments: we have the same number of
measurements per alternative; we can thus use ANOVA for
our purpose.

Two-factor ANOVA. The ANOVA discussed above is a
so called single-factor ANOVA, i.e., a single input variable
(factor) is varied in the experiment. A two-factor ANOVA
on the other hand allows for studying two input variables and
their mutual interaction. In practicular, a two-factor ANOVA
splits up the total variation between terms that quantify the

variation for each of the two factors, i.e., SSA and SSB, as
well as an interaction term between the factors, i.e., SSAB,
and a term that quantifies the variation within each combina-
tion of factors due to random errors, i.e., SSE. Similarly to
the above formulas, one can use the F-test to verify the pres-
ence of effects caused by either factor and the interaction
between the factors.

Post-hoc test. After completing an ANOVA test, we may
conclude that there is a statistically significant difference be-
tween the alternatives, however, the ANOVA test does not
tell us between which alternatives there is a statistically sig-
nificant difference. There exists a number of techniques to
find out between which alternatives there is or there is not
a statistically significant difference. One approach, which
we will be using in this paper, is called the Tukey HSD
(Honestly Significantly Different) test. The advantage of the
Tukey HSD test over simpler approaches, such as pairwise
Student’s t-tests, is that it limits the probability of making an
incorrect conclusion in case there is no statistically signifi-
cant difference between the alternatives and in case most of
the alternatives are equal but only a few are different. For a
more detailed discussion, we refer to the specialized litera-
ture [20, 23, 26].

4.2 Execution time variability
We first study how benchmark execution time is affected by
the compilation plan under replay compilation. To do so, we
consider the following experiment. We collect 10 compila-
tion plans per benchmark, and run each benchmark 10 times
for each compilation plan. This yields 100 execution times
in total per benchmark. This measurement procedure is done
for both 1-iteration and 10-iteration plans, for 5 GC strate-
gies and for 6 heap sizes. The goal of this experiment now is
to quantify whether the execution time variability observed
across these 100 measurements is determined more by the
compilation plans than by the runtime variability per compi-
lation plan.

Example. Figure 2 illustrates this experiment for a typical
benchmark, namely jython — we observed similar results
for other benchmarks. Violin plots are displayed which show
the GC time and mutator time variability within a compila-
tion plan (on the vertical axis). By comparing violin plots
across compilation plans (on the horizontal axis) we get in-
sight in how compilation plans affect execution time. The
middle point in a violin plot shows the median, and the
shape of the violin plot represents the distribution’s proba-
bility density function: the wider the violin plot, the higher
the density. The top and bottom points show the maximum
and minimum values. This figure suggests that the variabil-
ity within a compilation plan is much smaller than the vari-
ability across compilation plans.

Rigorous analysis. To study the execution time variabil-
ity across compilation plans in a more statistically rigorous

(a) GC time

218

220

222

224

226

P
la

n
 1

P
la

n
 2

P
la

n
 3

P
la

n
 4

P
la

n
 5

P
la

n
 6

P
la

n
 7

P
la

n
 8

P
la

n
 9

P
la

n
 1

0

!

! !

!

!

!

!

!

!

!

FastAdaptiveGenMS jython 144

N
o
rm

al
iz

ed
 e

x
ec

u
ti

o
n
 t

im
e

p
er

 c
o
m

p
il

at
io

n
 p

la
n
(m
s)

(b) mutator time

9700

9800

9900

10000

10100

10200

10300

P
la

n
 1

P
la

n
 2

P
la

n
 3

P
la

n
 4

P
la

n
 5

P
la

n
 6

P
la

n
 7

P
la

n
 8

P
la

n
 9

P
la

n
 1

0

! !

!

!

!

!

!

!

!

!

FastAdaptiveCopyMS jython 72

N
o
rm

al
iz

ed
 e

x
ec

u
ti

o
n
 t

im
e

p
er

 c
o
m

p
il

at
io

n
 p

la
n
(m
s)

Figure 2: Violin plots illustrating the variability in (a) GC
time and (b) mutator time within and across compilation
plans for jython on the AMD Athlon, the GenMS garbage
collector, and a 144 MB heap size; assuming a stable run
and a 10-iteration compilation plan. Time is measured in
milliseconds, and the difference between the highest and
lowest value for GC and mutator time is 3.6% and 6.2%,
respectively.

manner, we now use a single-factor ANOVA in which the
compilation plans are the alternatives. In other words, the
ANOVA will figure out whether the execution time variabil-
ity across these 100 measurements is due to random effects
rather than due to the compilation plans.

Figure 3 shows the percentage of the 30 experiments per
benchmark (there are 5 GC strategies and 6 heap sizes) for
which the ANOVA reports there is a statistically signifi-
cant difference in total execution time at the 95% confidence
level between the various compilation plans for a 1-iteration
plan. The top graph in Figure 3 shows the mix run results,
whereas the bottom graph shows the stable run results; there
are two bars per benchmark for the Intel Pentium 4 and
AMD Athlon machines, respectively. For the majority of the
benchmarks, there is a statistically significant difference in
execution times across multiple compilation plans. For sev-
eral benchmarks, the score equals 100% which means that
the execution times are significantly different across all com-
pilation plans. The difference tends to be higher for the mix
runs than for the stable runs for most of the DaCapo bench-

(a) mix run with a 1-iteration compilation plan

0

20

40

60

80

100

co
m

pr
es

s

jes
s db

jav
ac

m
pe

ga
ud

io

m
trt

jac
k

an
tlr

bl
oa

t

fo
p

hs
ql

db
jy

th
on

lu
in

de
x

pm
d

Pe
rc

en
ta

ge
 o

f e
xp

er
im

en
ts

AMD Athlon Intel Pentium 4

(b) stable run with a 1-iteration compilation plan

0

20

40

60

80

100

co
m

pr
es

s

jes
s db

jav
ac

m
pe

ga
ud

io

m
trt

jac
k

an
tlr

bl
oa

t

fo
p

hs
ql

db
jy

th
on

lu
in

de
x

pm
d

Pe
rc

en
ta

ge
 o

f e
xp

er
im

en
ts

AMD Athlon Pentium 4

Figure 3: The fraction of experiments for which there is
a statistically significant difference in total execution time
across the ten 1-iteration compilation plans on the AMD
Athlon XP and the Intel Pentium 4 platforms. The top and
bottom graphs show results for mix and stable replay, re-
spectively.

0

20

40

60

80

100

co
m

pr
es

s

jes
s db

jav
ac

m
pe

ga
ud

io

m
trt

jac
k

an
tlr

bl
oa

t

fo
p

hs
ql

db
jy

th
on

lu
in

de
x

pm
d

Pe
rc

en
ta

ge
 o

f c
om

pa
ris

on
s

gc time mutator time total time

Figure 4: The fraction of experiments for which there is a
statistically significant difference in GC, mutator and total
time across compilation plans. These graphs assume 10-
iteration plans and stable runs on the AMD Athlon platform.

(a) AMD Athlon

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

co
m

pr
es

s

jes
s db

jav
ac

m
pe

ga
ud

io

m
trt

jac
k

an
tlr

bl
oa

t

fo
p

hs
ql

db
jy

th
on

lu
in

de
x

pm
d

O
ve

rla
p

1 iteration plan 10 iteration plan

(b) Intel Pentium 4

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

co
m

pr
es

s

jes
s db

jav
ac

m
pe

ga
ud

io

m
trt

jac
k

an
tlr

bl
oa

t

fo
p

hs
ql

db
jy

th
on

lu
in

de
x

pm
d

O
ve

rla
p

1 iteration plan 10 iteration plan

Figure 5: Average overlap across compilation plans on (a)
the AMD Athlon platform, and (b) the Intel Pentium 4 plat-
form, for the 1-iteration and 10-iteration compilation plans.

marks on the AMD platform. This suggests that performance
seems to be more similar across compilation plans in the sta-
ble run.

Figure 4 shows similar results for the 10-iteration com-
pilation plans, but now we make a distinction between GC,
mutator and total time, and we assume the stable run. (Al-
though Figure 4 only shows results for the AMD Athlon,
we obtained similar results for the Intel Pentium 4.) We
conclude that even under 10-iteration compilation plans
there still is a large fraction of experiments for which we
observe statistically significant execution time differences
across compilation plans. And this is the case for GC, muta-
tor and total time.

4.3 Compilation load variability
Now that we have shown that different compilation plans can
result in statistically significantly different execution times,
this section quantifies why this is the case. Our intuition tells
us that the varying execution times are due to different meth-
ods being compiled at different levels of optimization across
compilation plans. To support this hypothesis we quantify
the relative difference in compilation plans.

To do so, we determine the Method Optimization Vec-
tor (MOV) per compilation plan. Each entry in the MOV
represents an optimized method along with its (highest) op-
timization level; the MOV does not include an entry for
baseline compiled methods. For example, if in one com-

pilation plan, the method foo 1 gets optimized to level
1, method foo 2 gets optimized to level 0, and method
foo 3 gets only baseline compiled, then the MOV looks like
[(foo 1,1);(foo 2,0)]. In another compilation plan,
method foo 1 gets optimized to optimization level 1 as
well, whereas method foo 2 gets baseline compiled, and
foo 3 gets optimized to level 0, then the MOV looks like
[(foo 1,1);(foo 3,0)]. Comparing the two compilation
plans can then be done by comparing their respective MOVs.
This is done by counting the number of (method, optimiza-
tion level) pairs that appear in both MOVs, divided by the to-
tal number of methods appearing in both compilation plans.
In the above example, the overlap metric equals 1/3, i.e.,
there is one common (method, optimization level) pair that
appears in both MOVs, namely (foo 1,1) and there are
three methods optimized in at least one of the compilation
plans. An overlap metric of one thus represents a perfect
match, and a zero overlap metric represents no match.

Figure 5 quantifies the overlap metric per benchmark
computed as an average across all (unique) pairs of 10 com-
pilation plans — there are C2

10 = 45 unique pairs of compi-
lation plans over which the average overlap metric is com-
puted. We observe that the overlap is rather limited, typically
under 0.4 for most of the benchmarks. There are a couple
benchmarks with relatively higher overlap metrics, see for
example compress and db. These benchmarks have a small
code footprint and therefore there is a higher probability that
the same methods will get sampled across multiple profiling
runs of the same benchmark. We conclude that the signifi-
cant performance differences across compilation plans are
due to compilation load differences.

4.4 Case study: Comparing GC strategies
We now study whether different compilation plans can lead
to different conclusions in practical research studies. In order
to do so, we consider a case study that compares GC strate-
gies using replay compilation as the experimental design —
this reflects a widely used methodology in GC research, see
for example [3, 6, 7, 17, 19, 29, 30, 32, 37]. GC poses a
complex space-time trade-off, and it is unclear which GC
strategy is the winner without detailed experimentation.

We use the same data set as before. There are 14 bench-
marks (7 SPECjvm98 benchmarks and 7 DaCapo bench-
marks), and we consider 5 GC strategies and 6 heap sizes
per benchmark. For each benchmark, GC strategy and heap
size combination, we have 10 measurements per compila-
tion plan for both the mix and stable runs; and we consider
1-iteration and 10-iteration plans. We then compute the av-
erage execution time along with its 95% confidence inter-
val across these 10 measurements, following the statistically
rigorous methodology described in our prior work [15] —
specifically, we use ANOVA in conjunction with the Tukey
HSD test to compute the simultaneous 95% confidence in-
tervals. This yields the average execution time along with its
confidence interval per GC strategy and heap size, for each

compilation plan i
Hi

0 is not rejected Hi
0 is rejected, A > B Hi

0 is rejected, B > A

compilation plan j
Hj

0 is not rejected agree inconclusive inconclusive
Hj

0 is rejected, A > B inconclusive agree disagree
Hj

0 is rejected, B > A inconclusive disagree agree

Table 2: Classifying pairwise GC comparisons when comparing compilation plans; A and B denote GC strategies, and A > B
means A outperforms B.

benchmark and compilation plan. We then compare these av-
erages and confidence intervals by doing a pairwise compar-
ison across compilation plans. The goal of this comparison
is to verify whether different compilation plans lead to con-
sistent conclusions about the best GC strategy for a given
heap size and benchmark.

When comparing two compilation plans, we compare the
execution times per pair of GC strategies (per heap size) and
classify this comparison in one of the three categories: agree,
disagree and inconclusive, see also Table 2. For a given com-
pilation plan pi and GC strategies A and B, we define the
null hypothesis as Hi

0 ≡ µA
pi

= µB
pi

. The null hypothesis
states that GC strategies A and B achieve the same mean ex-
ecution time under compilation plan pi. Hence, if the null
hypotheses Hi

0 and Hj
0 for compilation plans pi and pj are

rejected, and if in both cases the same GC strategy outper-
forms the other, then the comparison is classified as an agree.
This means that both compilation plans agree on the fact that
GC strategy A outperforms GC strategy B (or vice versa) in
a statistically significant way. In case both compilation plans
yield the result that both GC strategies are statistically indif-
ferent, i.e., for neither compilation plan the null hypothesis is
rejected, we also classify the GC comparison as an agree. If
on the other hand both compilation plans disagree on which
GC strategy outperforms the other one, then we classify the
comparison as disagree. In case the null hypothesis is re-
jected for one compilation plan, but not for the other, we
classify the GC comparison as inconclusive, i.e., there is no
basis for a statistically valid conclusion.

1-iteration plans. Figure 6 shows this classification per
benchmark for the total execution time under mix and sta-
ble replay for 1-iteration compilation plans. The disagree
and inconclusive categories are shown as a percentage —
the agree category then is the complement to 100%. For sev-
eral benchmarks, the fraction disagree comparisons is higher
than 5%, and in some cases even higher than 10%. The mpe-
gaudio benchmark is a special case with a very high disagree
fraction although it has a very small live data footprint: the
reason is that the various GC strategies affect performance
through their heap data layout — see also later for a more
rigorous analysis. For many benchmarks, the fraction incon-
clusive comparisons is larger than 10%, for both the mix and
stable runs, and up to 20% and higher for several bench-

(a) mix run

0
5

10
15
20
25
30
35
40
45

co
m

pr
es

s

jes
s db

jav
ac

m
pe

ga
ud

io

m
trt

jac
k

an
tlr

bl
oa

t

fo
p

hs
ql

db
jy

th
on

lu
in

de
x

pm
d

Pe
rc

en
ta

ge
 o

f c
om

pa
ris

on
s

disagree inconclusive

(b) stable run

0
5

10
15
20
25
30
35
40
45

co
m

pr
es

s

jes
s db

jav
ac

m
pe

ga
ud

io

m
trt

jac
k

an
tlr

bl
oa

t

fo
p

hs
ql

db
jy

th
on

lu
in

de
x

pm
d

Pe
rc

en
ta

ge
 o

f c
om

pa
ris

on
s

disagree inconclusive

Figure 6: Percentage inconclusive and disagreeing compar-
isons on the AMD Athlon using 1-iteration compilations
plans, under (a) mix replay and (b) stable replay.

marks. In other words, in a significant amount of cases, dif-
ferent compilation plans do not agree on which GC strategy
performs best.

10-iteration plans. Figures 7 and 8 show the percentage
of inconclusive and disagreeing comparisons for GC time
and mutator time, respectively, assuming stable replay and
10-iteration compilation plans. Although compilation plans
mostly agree on the best GC strategy in terms of GC time
(see Figure 7) — for some benchmarks, such as jess, bloat,
fop and mpegaudio, all compilation plans agree — this is
not the case for all benchmarks, see for example antlr and
the 64MB to 96MB heap size range. In contrast to the large
fraction of agrees in terms of GC time, this is not the case
for mutator time, see Figure 8. For some benchmarks, the
fraction disagrees and inconclusives can be as large as 13%

(a) compress

0
2
4
6
8

24 48 72 96 120 0

Pe
rc

en
ta

ge

of

disagree inconclusive

of
 c

om
pa

ris
on

s

(b) antlr

0
2
4
6
8

32 64 96 128 160 192

Pe
rc

en
ta

ge

of

disagree inconclusive

of
 c

om
pa

ris
on

s
(c) jess

0
0.2
0.4
0.6
0.8

1

32 64 96 128 160 192

Pe
rc

en
ta

ge

of

disagree inconclusive

of
 c

om
pa

ris
on

s

(d) bloat

0

0.5

1

56 112 168 224 280 336

Pe
rc

en
ta

ge

of

disagree inconclusive

of
 c

om
pa

ris
on

s

(e) db

0

5

10

15

32 64 96 128 160 192

Pe
rc

en
ta

ge

of

disagree inconclusive

of
 c

om
pa

ris
on

s

(f) fop

0

0.5

1

56 112 168 224 280 336

Pe
rc

en
ta

ge

of

disagree inconclusive

of
 c

om
pa

ris
on

s

(g) javac

0

1

2

3

32 64 96 128 160 192

Pe
rc

en
ta

ge

of

disagree inconclusive

of
 c

om
pa

ris
on

s

(h) hsqldb

0
1
2
3

17
6

35
2

52
8

70
4

88
0

10
56

Pe
rc

en
ta

ge

of

disagree inconclusive

of
 c

om
pa

ris
on

s

(i) mpegaudio

0
0.2
0.4
0.6
0.8

1

16 32 48 64 80 96

Pe
rc

en
ta

ge

of

disagree inconclusive

of
 c

om
pa

ris
on

s

(j) jython

0

2

4

6

72 144 216 288 360 432

Pe
rc

en
ta

ge

of

disagree inconclusive

of
 c

om
pa

ris
on

s

(k) mtrt

0

5

10

15

32 64 96 128 160 192

Pe
rc

en
ta

ge

of

disagree inconclusive

of
 c

om
pa

ris
on

s

(l) luindex

0
0.2
0.4
0.6
0.8

1

32 64 96 128 160 192

Pe
rc

en
ta

ge

of

disagree inconclusive

of
 c

om
pa

ris
on

s

(m) jack

0
2
4
6
8

10

24 48 72 96 120 144

Pe
rc

en
ta

ge

of

disagree inconclusive

of
 c

om
pa

ris
on

s

(n) pmd

0
1
2
3
4
5

64 128 192 256 320 384

Pe
rc

en
ta

ge

of

disagree inconclusive

of
 c

om
pa

ris
on

s

Figure 7: Percentage inconclusive and disagreeing compar-
isons for GC time under stable replay; heap size appears on
the horizontal axis in each of the per-benchmark graphs.

(a) compress

0
5

10
15
20

24 48 72 96 120 144

Pe
rc

en
ta

ge

of

disagree inconclusive

of
 c

om
pa

ris
on

s

(b) antlr

0
10
20
30
40

32 64 96 128 160 192

Pe
rc

en
ta

ge

of

disagree inconclusive

of
 c

om
pa

ris
on

s

(c) jess

0
5

10
15
20

32 64 96 128 160 192

Pe
rc

en
ta

ge

of

disagree inconclusive

of
 c

om
pa

ris
on

s

(d) bloat

0
5

10
15
20
25

56 112 168 224 280 336

Pe
rc

en
ta

ge

of

disagree inconclusive

of
 c

om
pa

ris
on

s

(e) db

0
5

10
15
20

32 64 96 128 160 192
Pe

rc
en

ta
ge

of

disagree inconclusive

of
 c

om
pa

ris
on

s

(f) fop

0
10
20
30
40

56 112 168 224 280 336

Pe
rc

en
ta

ge

of

disagree inconclusive

of
 c

om
pa

ris
on

s

(g) javac

0

5

10

15

128 160 192 32 64 96

Pe
rc

en
ta

ge

of

disagree inconclusive

of
 c

om
pa

ris
on

s

(h) hsqldb

0
5

10
15
20
25

17
6

35
2

52
8

70
4

88
0

10
56

Pe
rc

en
ta

ge

of

disagree inconclusive

of
 c

om
pa

ris
on

s
(i) mpegaudio

0
10
20
30
40

16 32 48 64 80 96

Pe
rc

en
ta

ge

of

disagree inconclusive

of
 c

om
pa

ris
on

s

(j) jython

0
5

10
15
20
25

72 144 216 288 360 432

Pe
rc

en
ta

ge

of

disagree inconclusive

of
 c

om
pa

ris
on

s

(k) mtrt

0
5

10
15
20

24 48 72 96 120 144

Pe
rc

en
ta

ge

of

disagree inconclusive

of
 c

om
pa

ris
on

s

(l) luindex

0
5

10
15
20

32 64 96 128 160 192

Pe
rc

en
ta

ge

of

disagree inconclusive

of
 c

om
pa

ris
on

s

(m) jack

0
5

10
15
20

24 48 72 96 120 144

Pe
rc

en
ta

ge

of

disagree inconclusive

of
 c

om
pa

ris
on

s

(n) pmd

0
5

10
15
20

64 128 192 256 320 384

Pe
rc

en
ta

ge

of

disagree inconclusive

of
 c

om
pa

ris
on

s

Figure 8: Percentage inconclusive and disagreeing compar-
isons for mutator time under stable replay; heap size appears
on the horizontal axis in each of the per-benchmark graphs.

(a) plan 1

9200

10200

11200

72 144 216 288 360 432

Ex
ec

ut
io

n
tim

e
(m

s)

CopyMS GenCopy GenMS MarkSweep SemiSpace

(b) plan 2

9200

10200

11200

72 144 216 288 360 432

Ex
ec

ut
io

n
tim

e
(m

s)

CopyMS GenCopy GenMS MarkSweep SemiSpace

Figure 9: Comparison between the mutator execution times
for jython using two different 10-iteration compilation plans
as a function of the heap size for five garbage collectors. We
show the mean of 10 measurements for each plan and the
95% confidence intervals.

(hsqldb) and 35% (fop), respectively. (Again, mpegaudio is
a special case for the same reason as above.)

To further illustrate the differences across compilation
plans, we now compare the mutator execution times of
jython for each of the five garbage collectors for two differ-
ent compilations plans obtained after running the benchmark
for 10 iterations. Figure 9 shows that for the first plan, there
is no clear winner given that there are only small perfor-
mance difference between CopyMS, GenCopy and SemiS-
pace. However, the second plan shows a very different pic-
ture, in which SemiSpace is the best collector by more than
3% for some heap sizes.

Analyzing mutator time. The high fraction disagrees and
inconclusives for mutator time in the above experiment
raises an important question: is this observation a result of
the effect that the GC strategy has on the data layout of
the mutator, or in other words, is the GC strategy one of
the main contributors to the high fraction disagrees and in-
conclusives? Or, is this observation simply a result of the
performance variability observed across compilation plans
and does the GC strategy not affect mutator time?

To answer this question we employ a two-factor ANOVA
with the two factors being the GC strategy and the compila-
tion plan, respectively. The two-factor ANOVA then reports

whether the variability in mutator time is due to the GC strat-
egy, the compilation plan, their mutual interaction, or ran-
dom noise in the measurements. Figure 10 shows the per-
centage of the total variability in mutator time under stable
replay that is accounted for by the garbage collector (SSA),
the compilation plan (SSB), their interaction (SSAB), and
the residual variability (SSE) due to random measurement
noise. For almost all benchmarks, the garbage collector has a
significant impact on mutator time. The same is true for both
the compilation plans and the interaction between these two
factors. For all benchmarks, except for mtrt, garbage col-
lection accounts for over 15% of the observed variability in
these experiments, and for many benchmarks, GC accounts
for more than 60% of the total variability. Remarkably, the
GC strategy affects mutator time quite a lot for mpegaudio,
accounting for over 50% of the observed variability, even
though no time is spent in GC during the stable run. This
explains the earlier finding for mpegaudio: its performance
is very sensitive to the data layout.

These results show that both factors, the GC strategy and
the compilation plan, as well as their mutual interaction,
have a significant impact on the observed variability. Most
importantly for this study, we conclude that the GC strategy
has a significant impact on the mutator time variability in
this experiment, and thus the answer to the above question
is that the large fraction of disagrees and inconclusives for
mutator time is in part due to GC, and is not just a result of
the variability observed across compilation plans.

4.5 Majority plan
It follows from the above analyses that multiple compila-
tion plans should be used in replay compilation instead of
a single compilation plan. These compilation plans are ob-
tained from multiple profiling runs. Some researchers how-
ever, have been using a majority compilation plan which
captures information from multiple profiles within a single
compilation plan. A majority plan reduces the number of
experiments that need to be conducted compared to mul-
tiple compilation plans, while (presumably) accounting for
the differences observed across compilation plans.

We now evaluate whether a majority plan can be used as
a substitute for multiple compilation plans. For doing so, we
again use a single-factor ANOVA setup with the GC strategy
being the factor. This yields us a mean and a confidence in-
terval per GC strategy and per heap size; this is done for the
majority plan on the one hand, and for multiple compilation
plans on the other hand. We subsequently perform pairwise
GC comparisons between the majority plan against the mul-
tiple compilation plans, and classify these comparisons in
the agree, disagree and inconclusive categories.

Figure 11 shows that the majority plan and the multiple
plans may disagree under both mix and stable replay. In ad-
dition, the conclusion is inconclusive in a substantial fraction
of the cases, i.e., one of the approaches claims there is no
difference between the alternatives, whereas the other does

(a) SPECjvm98

0%

20%

40%

60%

80%

100%

24 48 72 96 12
0

14
4 32 64 96 12
8

16
0

19
2 32 64 96 12
8

16
0

19
2 32 64 96 12
8

16
0

19
2 16 32 48 64 80 96 32 64 96 12
8

16
0

19
2 24 48 72 96 12
0

14
4

GC compilation plan interaction residue

compress jess db javac mpegaudio mtrt jack

Pe
rc

en
ta

ge
 o

f t
he

 o
bs

er
ve

d
va

ria
bi

lit
y

(b) DaCapo

0%

20%

40%

60%

80%

100%

32 64 96 12
8

16
0

19
2 56 11
2

16
8

22
4

28
0

33
6 56 11
2

16
8

22
4

28
0

33
6

17
6

35
2

52
8

70
4

88
0

10
56 72 14

4

21
6

28
8

36
0

43
2 64 12
8

19
2

25
6

32
0

38
4 64 12
8

19
2

25
6

32
0

38
4

GC compilation plan interaction residue

antlr bloat fop hsqldb jython luindex pmd

Pe
rc

en
ta

ge
 o

f t
he

 o
bs

er
ve

d
va

ria
bi

lit
y

Figure 10: Percentage of the variability in mutator time accounted for by (i) the GC strategy, (ii) the compilation plan, (iii)
the interaction between the GC strategy and the compilation plan, and (iv) the residual variability, for 10-iteration compilation
plans on the Athlon XP under stable replay.

find a significant difference. We thus conclude that a ma-
jority plan cannot serve as a proxy for multiple compilation
plans.

4.6 Summary
As a summary from this section, we conclude that (i) differ-
ent compilation plans can lead to execution time variability
that is statistically significant, and we observe this variabil-
ity in GC time, mutator time and total time, and, in addition,
we observe this for compilation plans obtained from multi-
iteration profiling runs as well as from single-iteration pro-
filing runs; (ii) the reason for this runtime variability is the
often observed difference in the methods and their optimiza-
tion levels appearing in the compilation plans; (iii) differ-
ent compilation plans can lead to inconsistent conclusions
in practical research studies; and (iv) a majority plan is not
an accurate proxy for multiple compilation plans. For these
reasons we argue that, in order to yield more accurate perfor-
mance results, replay compilation should consider multiple
compilation plans instead of a single one at replay time.

5. Statistical Analysis
Now that we have reached the conclusion that rigorous
replay compilation should consider multiple compilation
plans, we need statistically rigorous data analysis for taking
statistically valid conclusions from these multiple compila-
tion plans.

5.1 Multiple measurements per compilation plan
As mentioned before, the performance measurements for a
given compilation plan are still subject to non-determinism.
Therefore, it is important to apply rigorous data analy-
sis when quantifying performance for a given compilation
plan [15]. Before analyzing the data in terms of whether an
innovation improves performance, as will be explained in
the following section, we first compute the average execu-
tion time per compilation plan. Assume we have k measure-
ments xi, 1 ≤ i ≤ k, from a population with expected value
µ and variance σ2. The mean of these measurements x̄ is
computed as

x̄ =
∑k

i=1 xi

k
.

(a) mix replay

0
10
20
30
40
50
60
70
80

co
m

pr
es

s

jes
s db

jav
ac

m
pe

ga
ud

io

m
trt

jac
k

an
tlr

bl
oa

t

fo
p

hs
ql

db
jy

th
on

lu
in

de
x

pm
d

Pe
rc

en
ta

ge
 o

f c
om

pa
ris

on
s

disagree inconclusive

(b) stable replay

0
10
20
30
40
50
60
70
80
90

co
m

pr
es

s

jes
s db

jav
ac

m
pe

ga
ud

io

m
trt

jac
k

an
tlr

bl
oa

t

fo
p

hs
ql

db
jy

th
on

lu
in

de
x

pm
d

Pe
rc

en
ta

ge
 o

f c
om

pa
ris

on
s

disagree inconclusive

Figure 11: Percentage disagreeing and inconclusive com-
parisons under (a) mix replay, and (b) stable replay for all
benchmarks when comparing a majority plan versus multi-
ple 10-iteration compilation plans on the AMD Athlon plat-
form.

The central limit theory states that, for large values of k
(typically k ≥ 30), x̄ is approximately Gaussian distributed
with expected value µ and standard deviation σ/

√
k, pro-

vided that the samples xi, 1 ≤ i ≤ k, are (i) independent
and (ii) come from the same population with expected value
µ and finite standard deviation σ. In other words, irrespec-
tive of the underlying distribution population from which the
measurements xi are taken, the average measurement mean
x̄ is approximately Gaussian distributed if the measurements
are taken independently from each other. To reach indepen-
dence in our measurements, we consider the approach de-
scribed in our prior work [15]: we discard the first measure-
ment for a given compilation plan and retain the subsequent
measurements — this assumes that the libraries are loaded
when doing the measurements and removes the dependence
between subsequent measurements.

5.2 Matched-pair comparison
Comparing design alternatives and their relative perfor-
mance differences is of high importance to research and de-
velopment, more so than quantifying absolute performance
for a single alternative. When comparing two alternatives, a
distinction needs to be made between an experimental setup
that involves corresponding measurements versus a setup

that involves non-corresponding measurements. Under re-
play compilation with multiple compilation plans there is an
obvious pairing for the measurements per compilation plan.
In particular, when evaluating the efficacy of a given inno-
vation, the performance is quantified before the innovation
as well as after the innovation, forming an obvious pair per
compilation plan. This leads to a so called before-and-after
or matched-pair comparison [20, 23].

To determine whether there is a statistically significant
difference between the means before and after the innova-
tion, we must compute the confidence interval for the mean
of the differences of the paired measurements. This is done as
follows, assuming there are n compilation plans. Let b̄j , 1 ≤
j ≤ n, be the average execution time for compilation plan j
before the innovation; likewise, let āj , 1 ≤ j ≤ n, be the av-
erage execution time for compilation plan j after the innova-
tion. We then need to compute the confidence interval for the
mean d̄ of the n difference values d̄j = āj − b̄j , 1 ≤ j ≤ n.

The confidence interval for the mean of the differences
[c1, c2] is defined such that the probability of the expected
value δ of the differences falls between c1 and c2 equals
1 − α; α is called the significance level, and (1 − α) is
called the confidence level. Because the significance level α
is chosen a priori, we need to determine c1 and c2 such that
Pr[c1 ≤ δ ≤ c2] = 1 − α. Typically, c1 and c2 are chosen
to form a symmetric interval around δ, i.e., Pr[δ < c1] =
Pr[δ > c2] = α/2. Applying the central-limit theorem as
explained in the previous section, which states that ā, b̄, and,
by consequence, d̄ are Gaussian distributed, we thus find that

c1 = d̄− z1−α/2
sd̄√
n

c2 = d̄ + z1−α/2
sd̄√
n

,

with sd̄ the standard deviation of the difference values com-
puted as follows:

sd̄ =

√∑n
i=1(d̄i − d̄)2

n− 1
.

The value z1−α/2 is defined such that a random variable
Z that is Gaussian distributed with expected value µ =
0 and variance σ2 = 1 has a probability of 1 − α/2 to
be smaller than or equal to z1−α/2. The value z1−α/2 is
typically obtained from a precomputed table.

The above assumes that the number of compilation plans
is sufficiently large, i.e., n ≥ 30 [23]. In case there are less
than 30 compilation plans, d̄ can no longer be assumed to
be Gaussian distributed. Instead, it can be shown that the
distribution of the transformed value t = (d̄ − δ)/(sd̄/

√
n)

follows the Student’s t-distribution with n − 1 degrees of
freedom. The confidence interval can then be computed as:

c1 = d̄− t1−α/2;n−1
sd̄√
n

c2 = d̄ + t1−α/2;n−1
sd̄√
n

,

with the value t1−α/2;n−1 defined such that a random vari-
able T that follows the Student’s t distribution with n − 1
degrees of freedom has a probability of 1−α/2 to be smaller
than or equal to t1−α/2;n−1. As with the z1−α/2 value from
above, also the t1−α/2;n−1 value is typically obtained from
a precomputed table. It is interesting to note that as n in-
creases, the Student’s t-distribution approaches the Gaussian
distribution.

Once the confidence interval is computed, we then verify
whether the confidence interval includes zero. If the confi-
dence interval includes zero, we conclude, at a given (1−α)
confidence level, that the measured differences are not sta-
tistically significant. If not, there is no statistical evidence
to suggest that there is no statistically significant difference.
Note the careful wording here. There is still a probability α
that the observed differences are due to random effects in
the measurements and not due to differences between the al-
ternatives. In other words, we cannot assure with a 100%
certainty that there is an actual difference between the com-
pared alternatives. In some cases, taking such ‘weak’ con-
clusions may not be very satisfactory but it is the best we
can do given the statistical nature of the measurements.

6. Rigorous Replay Compilation
Figure 12 illustrates the overall replay compilation method-
ology that we advocate when comparing two alternatives.
We start by collecting n compilation plans. For each of these
compilation plans we then collect k performance numbers
for both the ‘before’ and the ‘after’ experiments, and subse-
quently compute an average performance number per com-
pilation plan before the innovation, b̄j , as well as after the
innovation, āj . The differences between the alternatives per
compilation plan, d̄j = b̄j − āj , then serve as input to the
matched-pair comparison as explained in the previous sec-
tion.

The replay methodology proposed in the previous sec-
tion is more rigorous than current practice because it in-
cludes multiple compilation plans. The downside is that this
methodology implies that more experiments need to be run.
We now need to collect performance numbers for multiple
compilation plans instead of a single compilation plan. This
may be time-consuming.

Fortunately, only a limited number of compilation plans
need to considered. The reason is that matched-pair compar-
ison leverages the likely observation that the variability in
relative performance difference between the alternatives is
smaller than the variability observed across the compilation
plans. More precisely, as we observed in Section 4, the vari-
ability in performance between different compilation plans
can be large. However, the intuition is that the variability in
relative performance across alternatives for a given compi-
lation plan is not very large. A compilation plan leading to

2 n1

1 k 1 k 1 k 1 k 1 k 1 k

benchmark

n compilation plans ...

...

k measurements per
compilation plan
per experiment

a1 a2 anb1 b2 bn

d1 d2 dn

matched-pair comparison

...

'before'
experiment

'after'
experiment

...

...

...

...

Figure 12: Replay compilation methodology using multiple
compilation plans.

high performance for one alternative is likely to also yield
high performance for the other alternative, even if the abso-
lute performance is different. In our experiments, we found
this to be the case in general, as will be shown later. We will
exploit this property to limit the number of compilation plans
that need to be considered while maintaining high accuracy
and tight confidence intervals.

The underlying reason is that a matched-pair comparison
exploits the property of paired or so called corresponding
measurements. To better understand this important property,
we first need to explain how to compare two alternatives in
case of non-corresponding measurements.

6.1 Non-corresponding measurements
Consider two alternatives and respective measurements
x1j , 1 ≤ j ≤ n1 and x2j , 1 ≤ j ≤ n2; assume there is
no correspondence or pairing. We now need to compute the
confidence interval of the difference of the means. We first
need to compute the averages x̄1 and x̄2 for the two alterna-
tives. The difference of the means equals x̄ = x̄2 − x̄1. The
standard deviation of the difference of the means equals

sx =

√
s2
1

n1
+

s2
2

n2
,

with s1 and s2 the standard deviation for the two respective
alternatives.

We can now compute the confidence interval [c1, c2] for
the difference of the means, again based on the central limit
theory:

c1 = x̄− z1−α/2 · sx

c2 = x̄ + z1−α/2 · sx.

If the resulting confidence interval includes zero, we can
conclude that, at the confidence level chosen, there is no
significant difference between the two alternatives.

(a) SPECjvm98 stable

0.0 0.5 1.0 1.5

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Ratio

F
ra

ct
io

n
 o

f
co

m
p
ar

is
o
n
s

R

(b) DaCapo stable

0.0 0.5 1.0 1.5

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Ratio

F
ra

ct
io

n
 o

f
co

m
p
ar

is
o
n
s

R

Figure 13: Cumulative distribution of the ratio R in confidence interval width between matched-pair comparison versus non-
corresponding measurements statistics.

6.2 Comparison between corresponding and
non-corresponding measurements

Let’s now compare the confidence interval computed for cor-
responding measurements versus non-corresponding mea-
surements. Assume n1 = n2 = n, and bi = x2i and
ai = x1i. Recall the confidence interval for corresponding
measurements equals:

c1,2 = d̄± z1−α/2 ·
sd̄√
n

,

or

c1,2 = d̄± z1−α/2 ·

√∑n
i=1(d̄i − d̄)2

n(n− 1)
.

For non-corresponding measurements, the confidence in-
terval for the difference of the means equals:

c1,2 = d̄± z1−α/2 ·

√∑n
i=1(āi − ā)2

n(n− 1)
+

∑n
i=1(b̄i − b̄)2

n(n− 1)
.

Comparing both confidence intervals boils down to com-
paring

n∑
i=1

(d̄i − d̄)2

for the corresponding measurements, versus

n∑
i=1

(āi − ā)2 +
n∑

i=1

(b̄i − b̄)2

for the non-corresponding measurements. Writing d̄i as b̄i−
āi, and d̄ as b̄− ā, enables expanding the expression for the
corresponding measurements to:

n∑
i=1

(āi − ā)2 +
n∑

i=1

(b̄i − b̄)2 − 2 ·
n∑

i=1

(āi − ā)(b̄i − b̄).

By consequence, if the term

n∑
i=1

(āi − ā)(b̄i − b̄)

is positive, then the confidence interval for the correspond-
ing measurements is smaller than the confidence interval for
the non-corresponding measurements. In other words, corre-
sponding measurements result in tighter confidence intervals
if the performance variation is large across the compilation
plans, i.e., āi− ā and b̄i− b̄ are large, and if the relative per-
formance variation is limited across compilation plans when
comparing two alternatives.

To illustrate this finding empirically through our GC case
study, we compute the ratio R:

R =
∑n

i=1(d̄i − d̄)2∑n
i=1(āi − ā)2 +

∑n
i=1(b̄i − b̄)2

,

across all benchmarks and all heap sizes, for all pairwise GC
strategy comparisons. If R is smaller than one, this means
that the confidence interval computed through matched-pair
comparison is smaller than the confidence interval com-
puted through statistics assuming non-corresponding mea-
surements. Figure 13 shows the cumulative distribution of
R. The various graphs show that in the majority of the cases,
matched-pair comparison indeed results in smaller confi-
dence intervals of the difference of the means. For exam-
ple, for DaCapo and stable replay, for over 85% of the cases,
matched-pair comparison results in a smaller confidence in-
terval.

6.3 Number of compilation plans
The above analysis shows that matched-pair comparison for
analyzing the performance results from multiple compila-
tion plans is likely to result in tighter confidence intervals
than using non-corresponding measurements statistics. This

(a) SPECjvm98 stable total execution time

 2
 3

 4
 5

 6
 7

 8
 9

 10 1
 2

 3
 4

 5
 6

 7
 8

 9
 10

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

Fr
ac

tio
n

of
 in

co
nc

lu
siv

e
an

d
di

sa
gr

ee
in

g
co

m
pa

ris
on

s

Number of
compilation plans

Number of measurements
per compilation plan

(b) DaCapo stable total execution time

 2
 3

 4
 5

 6
 7

 8
 9

 10 1
 2

 3
 4

 5
 6

 7
 8

 9
 10

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

Number of
compilation plans

Number of measurements
per compilation plan

Fr
ac

tio
n

of
 in

co
nc

lu
siv

e
an

d
di

sa
gr

ee
in

g
co

m
pa

ris
on

s

(c) SPECjvm98 stable mutator execution time

 2
 3

 4
 5

 6
 7

 8
 9

 10 1
 2

 3
 4

 5
 6

 7
 8

 9
 10

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

Number of
compilation plans

Number of measurements
per compilation plan

Fr
ac

tio
n

of
 in

co
nc

lu
siv

e
an

d
di

sa
gr

ee
in

g
co

m
pa

ris
on

s

(d) DaCapo stable mutator execution time

 2
 3

 4
 5

 6
 7

 8
 9

 10 1
 2

 3
 4

 5
 6

 7
 8

 9
 10

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

Fr
ac

tio
n

of
 in

co
nc

lu
siv

e
an

d
di

sa
gr

ee
in

g
co

m
pa

ris
on

s

Number of
compilation plans

Number of measurements
per compilation plan

Figure 14: Exploring the trade-off between the number of compilation plans versus the number of measurements per 10-
iteration compilation plan as measured on the AMD Athlon platform.

observation has an important implication. It means that for
the same level of accuracy, i.e., for the same confidence
interval size, fewer compilation plans need to be consid-
ered when using matched-pair comparison statistics instead
of non-corresponding measurements statistics. Or, in other
words, under matched-pair comparison, the number of com-
pilation plans that are needed to obtain tight confidence in-
tervals is limited.

We now leverage this observation to find a good trade-off
between the number of compilation plans versus the number
of measurements per plan to obtain accurate performance
numbers. For exploring this trade-off, we again consider
our GC case study in which we consider 5 GC strategies
and 6 heap sizes. We now pairwise compare GC strategies
per heap size through matched-pair comparison. Figure 14
shows the fraction inconclusive and disagree conclusions
(averaged across all SPECjvm98 and DaCapo benchmarks)
as a function of the number of compilation plans and the
number of measurements per plan for the stable run. We
show results for both total execution time and mutator ex-

ecution time. The reference point is the setup for which we
consider 10 compilation plans and 10 runs per compilation
plan. In other words, a point (x, y) in this graph shows the
fraction inconclusive and disagree comparisons for x com-
pilation plans and y measurements per plan compared to
10 compilation plans and 10 measurements per plan. We
observe that the fraction inconclusive and disagree conclu-
sions quickly decreases with even a limited number of, say
4 or 5, compilation plans. At the same time, the fraction in-
conclusive and disagree conclusions is fairly insensitive to
the number of measurements per compilation plan. In other
words, for a given experimentation time budget, it is benefi-
cial to consider multiple compilation plans rather than mul-
tiple measurements per compilation plan.

7. Summary
Replay compilation is an increasingly widely used experi-
mental design methodology that aims at controlling the non-
determinism in managed runtime environments such as the
Java virtual machine. Replay compilation fixes the com-

pilation load by inducing a pre-recorded compilation plan
at replay time. The compilation plan eliminates the non-
determinism due to timer-based sampling for JIT optimiza-
tion.

Current practice typically considers a single compilation
plan at replay time, albeit a plan may have been derived from
multiple profiles. The key observation made in this paper is
that a single compilation plan at replay time does not suffi-
ciently account for the variability observed across different
profiles. The reason is that different methods may be op-
timized at different levels of optimization across different
compilation plans. And this may lead to inconsistent con-
clusions across compilation plans in practical research stud-
ies. In addition, we have shown that a majority compilation
plan is no proxy for using multiple compilation plans. We
therefore advocate replay compilation using multiple com-
pilation plans so that the performance number obtained from
replay compilation is a better representative for average per-
formance.

The statistical data analysis that we advocate under replay
compilation with multiple compilation plans is matched-pair
comparison. Matched-pair comparison considers the before
and after experiments for a given compilation plan as a pair,
and by doing so, achieves tighter confidence intervals in gen-
eral than assuming unpaired measurements. The reason is
that replay compilation leverages the observation that the
variability in the performance differences between two de-
sign alternatives is likely smaller than the variability across
compilation plans. By consequence, replay compilation with
multiple compilation plans and matched-pair comparison
limits the number of compilation plans that need to be con-
sidered, and thus limits the experimentation time overhead
incurred by multiple compilation plans.

Acknowledgments
We would like to thank the anonymous reviewers for their
valuable comments — their detailed suggestions greatly
helped us improving this paper. Andy Georges and Lieven
Eeckhout are Postdoctoral Fellows of the Fund for Sci-
entific Research–Flanders (Belgium) (FWO–Vlaanderen).
Dries Buytaert was supported by the Institute for the Promo-
tion of Innovation by Science and Technology in Flanders
(IWT).

References
[1] M. Arnold, S. Fink, D. Grove, M. Hind, and P. F. Sweeney.

Adaptive optimization in the Jalapeño JVM. In OOPSLA,
pages 47–65, Oct. 2000.

[2] BEA. BEA JRockit: Java for the enterprise. Technical white
paper. http://www.bea.com, Jan. 2006.

[3] S. Blackburn, P. Cheng, and K. S. McKinley. Myths and
reality: The performance impact of garbage collection. In
SIGMETRICS, pages 25–36, June 2004.

[4] S. Blackburn, P. Cheng, and K. S. McKinley. Oil and water?
High performance garbage collection in Java with JMTk. In
ICSE, pages 137–146, May 2004.

[5] S. M. Blackburn, R. Garner, C. Hoffmann, A. M. Khang, K. S.
McKinley, R. Bentzur, A. Diwan, D. Feinberg, D. Frampton,
S. Z. Guyer, M. Hirzel, A. Hosking, M. Jump, H. Lee, J. E. B.
Moss, A. Phansalkar, D. Stefanovic, T. VanDrunen, D. von
Dincklage, and B. Wiedermann. The DaCapo benchmarks:
Java benchmarking development and analysis. In OOPSLA,
pages 169–190, Oct. 2006.

[6] S. M. Blackburn, M. Hertz, K. S. McKinley, J. E. B. Moss,
and T. Yang. Profile-based pretenuring. ACM Trans.
Program. Lang. Syst., 29(1):2, 2007.

[7] S. M. Blackburn and A. L. Hosking. Barriers: Friend or foe?
In ISMM, pages 143–151, Oct. 2004.

[8] M. D. Bond and K. S. McKinley. Continuous path and edge
profiling. In MICRO, pages 130–140, Dec. 2005.

[9] M. D. Bond and K. S. McKinley. Probabilistic calling
context. In OOPSLA, pages 97–112, Oct. 2007.

[10] M. D. Bond and K. S. McKinley. Bell: Bit-encoding online
memory leak detection. In ASPLOS, pages 61–72, Oct. 2006.

[11] D. Buytaert, A. Georges, M. Hind, M. Arnold, L. Eeckhout,
and K. De Bosschere. Using HPM-sampling to drive dynamic
compilation. In OOPSLA, pages 553–568, Oct. 2007.

[12] J. Cavazos and J. E. B. Moss. Inducing heuristics to decide
whether to schedule. In PLDI, pages 183–194, June 2004.

[13] M. Cierniak, M. Eng, N. Glew, B. Lewis, and J. Stichnoth.
The open runtime platform: A flexible high-performance
managed runtime environment. Intel Technology Journal,
7(1):5–18, 2003.

[14] L. Eeckhout, A. Georges, and K. De Bosschere. How Java
programs interact with virtual machines at the microarchitec-
tural level. In OOPSLA, pages 169–186, Nov. 2003.

[15] A. Georges, D. Buytaert, and L. Eeckhout. Statistically
rigorous Java performance evaluation. In OOPSLA, pages
57–76, Oct. 2007.

[16] D. Gu, C. Verbrugge, and E. M. Gagnon. Relative factors
in performance analysis of Java virtual machines. In VEE,
pages 111–121, June 2006.

[17] S. Z. Guyer, K. S. McKinley, and D. Frampton. Free-me: A
static analysis for automatic individual object reclamation. In
PLDI, pages 364–375, June 2006.

[18] M. Hauswirth, P. F. Sweeney, A. Diwan, and M. Hind.
Vertical profiling: Understanding the behavior of object-
oriented applications. In OOPSLA, pages 251–269, Oct.
2004.

[19] X. Huang, S. M. Blackburn, K. S. McKinley, J. E. B. Moss,
Z. Wang, and P. Cheng. The garbage collection advantage:
Improving program locality. In OOPSLA, pages 69–80, Oct.
2004.

[20] R. A. Johnson and D. W. Wichern. Applied Multivariate
Statistical Analysis. Prentice Hall, 2002.

[21] C. Krintz and B. Calder. Using annotations to reduce dynamic
optimization time. In PLDI, pages 156–167, May 2001.

[22] B. Lee, K. Resnick, M. D. Bond, and K. S. McKinley.
Correcting the dynamic call graph using control-flow
constraints. In CC, pages 80–95, March 2007.

[23] D. J. Lilja. Measuring Computer Performance: A Practi-
tioner’s Guide. Cambridge University Press, 2000.

[24] J. Maebe, D. Buytaert, L. Eeckhout, and K. De Bosschere.
Javana: A system for building customized Java program
analysis tools. In OOPSLA, pages 153–168, Oct. 2006.

[25] V. Sundaresan, D. Maier, P. Ramarao, and M. Stoodley.
Experiences with multithreading and dynamic class loading
in a Java just-in-time compiler. In CGO, pages 87–97, Mar.
2006.

[26] J. Neter, M. H. Kutner, W. Wasserman, and C. J. Nachtsheim.
Applied Linear Statistical Models. McGraw-Hill, 1996.

[27] K. Ogata, T. Onodera, K. Kawachiya, H. Komatsu, and
T. Nakatani. Replay compilation: Improving debuggability
of a just-in-time compiler. In OOPSLA, pages 241–252, Oct.
2006.

[28] M. Paleczny, C. Vick, and C. Click. The Java Hotspot server
compiler. In JVM, pages 1–12, Apr. 2001.

[29] N. Sachindran, and J. E. B. Moss. Mark-copy: fast copying
GC with less space overhead. In OOPSLA, pages 326–343,
Nov. 2003.

[30] N. Sachindran, J. E. B. Moss, and E. D. Berger. MC2: high-

performance garbage collection for memory-constrained
environments. In OOPSLA, pages 81–98, Oct. 2004.

[31] F. T. Schneider, M. Payer, and T. R. Gross. Online
optimizations driven by hardware performance monitoring.
In PLDI, pages 373–382, June 2007.

[32] S. Soman, C. Krintz, and D. F. Bacon. Dynamic selection
of application-specific garbage collectors. In ISMM, pages
49–60, June 2004.

[33] Standard Performance Evaluation Corporation. SPECjvm98
Benchmarks. http://www.spec.org/jvm98.

[34] T. Suganuma, T. Yasue, M. Kawahito, H. Komatsu, and
T. Nakatani. Design and evaluation of dynamic optimizations
for a Java just-in-time compiler. In TOPLAS, 27(4):732–785,
July 2005.

[35] P. F. Sweeney, M. Hauswirth, B. Cahoon, P. Cheng, A. Diwan,
D. Grove, and M. Hind. Using hardware performance
monitors to understand the behavior of Java applications.
In VM, pages 57–72, May 2004.

[36] J. Whaley. A portable sampling-based profiler for Java virtual
machines. In Proceedings of the ACM 2000 Conference on
Java Grande, pages 78–87, June 2000.

[37] T. Yang, M. Hertz, E. D. Berger, S. F. Kaplan, and J. E. B.
Moss. Automatic heap sizing: taking real memory into
account. In ISMM, pages 61–72, June 2004.

